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Abstract

Effects of rotation on onset of convection during plane-front directional solidification of Pb-Sn
and the pseudobinary system mercury cadmium telluride (Hgl_xCdxTe) '
solidification of Pb-Sn have been studied by means of linear stability analysis, and on dendritic

Incorporating Coriolis and centrifugal accelerations into the momentum equation of Coriell et
al., we find that under realistic processing conditions, a large degree of stabilization can be

achieved using modest rotation rates for both Pb-Sn and mercury cadmium telluride (I--Igl_xCd Te).
At a growth velocity of 5 I.t/sec and nominal liquid-side temperature gradient of 200 K/-cXmin

Pb-Sn, rotation at 500 rpm results in a hundredfold increase in the critical Sn concentration. Large
increases in the maximum allowable growth velocity at fixed melt composition are also attainable
with modest rotation rates. The effect is amplified under conditions of reduced gravitationalacceleration.

For Hgl.xCdxTe ' we have also studied the nonrotating case. The key differences are due to
the existence of a composition range for Hgl_xCdxTe in which the melt density has a local
maximum as a function of temperature. When the melt solidifies by cooling from below, the liquid
density may initially increase with distance above the interface, before ultimately decreasing as the
melt temperature increases above the value at which the local density maximum occurs. In contrast

to the Pb-Sn case where density depends monotonically on temperature and composition, for Hg 1
xCdxTe there exists a critical value of the growth velocity above which plane-front solidification is
unstable for all bulk CdTe mole fractions. Again, rotation leads to significant inhibition of onset.

We identify the predicted stabilization with the Taylor-Proudman mechanism by which
rotation inhibits thermal convection in a single-component fluid heated from below. In a binary
liquid undergoing solidification, rotation inhibits the onset of buoyancy-driven convection, and has
no effect on the short-wavelength morphological instability.

At large growth velocities, the plane-front interface between liquid and solid becomes unstable

with respect to a morphological instability and solidification occurs dendritically, with a mushy
zone of dendrites and interdendritic fluid separating the solid from the melt. For the Pb-Sn system,
rotation substantially suppresses the onset of convection in the mushy zone and in the overlying
liquid, holding open the promise that rotation can suppress freckling and other macrosegregationdefects.
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1. Introduction

During directional solidification of alloys, it is frequently desired to produce large single
crystals with very low densities of macrosegregat!on defects and other imperfections. In principle,
this can sometimes be achieved by plane-front solidification, in which the melt-solid interface

remains perfectly planar. In such a case, the solidification process would be steady in a reference
frame moving with the interface, and the only spatial variation would be in a direction normal to the

interface. However, in real systems, several instabilities can cause departures from the nominallysteady and one-dimensional plane-front case.

First, the solid-liquid interface may be subject to the so-called morphological instability, which
has been studied extensively since the early work of Mullins and Sekerka (1964). This instability
causes deformation of the nominally planar interface, ultimately leading to formation of a two-
phase "mushy zone" of dendrites and interdendritic liquid. Departures from one-dimensl
and steadiness in the mush zone re ..... " • "onality
material. Y suit m nonumform distribution of solute m the solidified

Second, the density of a binary or multicomponent melt depends on both temperature and
composition. When an alloy is solidified by cooling from below, rejection of solute(s) at the
growing interface is potentially destabilizing if the solute-enriched liquid just above the interface is
less dense than the warmer overlying bulk liquid• Under some conditions, this adverse solute
gradient overcomes the stabilizing temperature gradient, leading to convection in the melt. This

fluid motion provides another transport mechanism, besides molecular diffusion, for redistributing
solute(s) into the bulk liquid from the relatively enriched region near the interface. Convection in
the melt is often referred to as thermosolutal convection, or because the diffusivities of heat and
solute are different, as doubly-diffusive convection.

Convective and morphological instabilities in a binary alloy undergoing directional
solidification were first studied by Coriell et al. (1980) using a linear stability analysis. These
authors showed that motion may occur due to either morphological or convective instabilities, and

that the buoyancy force does not sensibly alter the criterion for onset of morphological instability,
which occurs at higher wavenumbers than does the buoyancy-driven instability. Subsequent work

was reviewed by Glicksman et al. (1986), and Sekerka and Coriell (1987). More general
discussions of the effects of convection on plane-front and dendritic solidification have been given
recently by Worster (1991), Davis (1990), Huppen (1990), Polezhaev (1988), and Miiller (1988).

Buoyancy-driven convection in the melt has been shown to be the dominant factor in the

formation of "freckles", a macrosegregation defect deleterious to the mechanical properties of
directionally solidified alloys. The formation and characterization of freckles in

superalloys were first studied experimentally by Giamei and Kear (1970). Poirier nickel-based• • et al. (1981)
investigated macrosegregation in electroslag ingots, showed that convection in the melt results in
freckling in the solidified material, and suggested that rotation might reduce freckling. Ridder et al.

(1981) studied the effects of fluid flow on macrosegregation in nominally axisymmetric ingots and
showed that melt convection results in macrosegregation in the mushy zone. In a theoretical study
of a binary alloy solidifying radially inward, Maples and Poirier (1984) concluded that

macrosegregation results from natural convection in the mushy zone driven by nonuniform
temperature and solute distributions. A recent review of the effects of buoyancy-driven convection

on macrosegregation in binary and quasi-binary nonmetallic systems has been given by Miiller(1988). •

One means by which the onset of convection can be inhibited in a density-stratified fluid layer
is to subject the layer to a magnetic field aligned parallel or perpendicular to the stratification

(Miiller 1988). For horizontal Pb-Sn layers solidified from below at several growth velocities,
Coriell et al. (1980) showed theoretically that the critical Sn concentration above which instability
occurs can be increased an order of magnitude by applying a vertical magnetic field of the order of
one tesla. This technique requires that the liquid be an electrical conductor, and so is applicable to
metallic alloys, semiconductors, and aqueous solutions.

Macrosegregation might also be controlled by increasing or decreasing the magnitude of the
gravitational acceleration or changing its direction. Alexander et al. (1989) and Heinrich et al.
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(1989a,b) theoretically studied the effect of reduced gravity on macrosegregation in directionally
solidified alloys. These authors suggested that macrosegregation in alloys can be reduced by
solidification in a low-gravity environment. MUller (1990) and Weber et al. (1990) have recently
discussed solidification under conditions where the magnitude of the body force is greater or less
than that of normal gravity.

Both gravity and an external magnetic field are body forces which act on the liquid. As
opposed to contact forces such as pressure, viscous stress, and surface tension, which act on the
surfaces of a fluid element, body forces act on the mass of a fluid element. Hence, their local

strengths are proportional to the local fluid density. In addition to gravitational and magnetic body
forces, there are other "pseudo-body forces" which manifest themselves as fictitious accelerations

(centripetal and Coriolis) when the reference frame to which the fluid motion is referred undergoes
steady rotation relative to an inertial frame. (An additional fictitious acceleration, with which we
will not be concerned, manifests itself if the rotation of the noninertial frame relative to the inertial
frame is unsteady.) Although these accelerations do not correspond directly to forces (as in the
case of the gravitational acceleration), they have the same mathematical form as accelerations
associated with body forces, and can have dynamical consequences equally as profound as the
gravitational and magnetic forces discussed above (Greenspan 1968). In light of this, and the fact

that modification of the gravitational field or imposition of an external magnetic field may not
always be possible, the possibility of using rotation to suppress the onset of convection in a liquidundergoing directional solidification is of interest.

Several effects of rotation on solidification have been discussed by Schulz-DuBois (1972).
The experiments of Kou (1978), Kou et al. (1978), Sample and Hellawell (1984), Mialler (1990),
and Weber et aL (1990) have shown that rotation can significantly reduce the degree of
macrosegregation in binary alloys directionally solidified under plane,front or dendritic conditions.
Kou and Kou et al. studied the effect of steady rotation about a vertical axis on freckle formation in

Sn-Pb alloys. Sample and Hellawell considered solidification of the transparent alloy NHoCI-H20
in a crucible rotating about an axis inclined between 0 and 30 degrees with respect to the vertical.
Mtiller (1990) and Weber et al. have studied the effect of rotation on the growth of Te-doped InSb
crystals, and have shown that striations can be suppressed at sufficiently high rotation rates. These

studies show that the degree of macrosegregation (freckles and striations) can be significantlyreduced by rotation.

There are two means by which steady rotation about a fixed axis can influence the motion of a
fluid. In terms of a reference frame rotating with constant angular velocity t'l about an axis, these

correspond to the centripetal and Coriolis accelerations, for which the terms pLt'lxf_xr and
2PL_XU, respectively, are added to the momentum equation. Here, r is the position vector
measured from the axis of rotation, u is the local fluid velocity relative to the noninertial reference
frame, and OL is the local density of the liquid.

Previous theoretical studies of the effects of rotation on the onset of buoyancy-driven

convection have been restricted to cases where no solidification occurs. For a horizontally
unbounded layer of a single-component fluid, Chandrasekhar (1961), Chandrasekhar and Elbert
(1955), and Niiler and Bisshopp (1965) have shown that steady uniform rotation about a vertical
axis can significantly inhibit the onset of convection, with the Coriolis-related Taylor-Proudman
mechanism (1961) playing the dominant role. The effects of centripetal, Coriolis, and gravitational
accelerations on convection in horizontally confined rotating fluids in cylindrical containers of

various aspect ratios was considered in an early series of papers by Homsy and Hudson (1969,

1971a-c, 1972). More recently, for a single-component fluid Weber et al. (1990) have computed
buoyancy-driven flows equivalent to those which can be driven by a temperature gradient
maintained between the ends of an otherwise insulated right circular cylinder rotating at constant

angular velocity about an axis perpendicular to and intersecting the cylinder axis but not passing
through the cylinder. Three-dimensional computations, in which the variation of the magnitude of
the centripetal acceleration f_xf_xr along the cylinder axis was neglected (a good approximation
when the cylinder length is small compared to the shortest distance between the axis of rotation and
the cylinder), were performed with the term accounting for the Coriolis acceleration 2_xu either
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included or omitted. Weber et al. found excellent agreement between experiment and computation
when the Coriolis acceleration was included.

For a binary fluid, Pearlstein (1981) has shown that the Coriolis acceleration can either
stabilize or destabilize a horizontally unbounded layer, depending on the values of the Prandtl and
Schmidt numbers, the dimensionless rotation rate (expressed in terms of a Taylor number), and the

dimensionless temperature or solute gradient (expressed in terms of thermal and solutal Rayleigh
numbers). Other work concerning the effect of rotation on doubly-diffusive convection in binary
fluids (with no phase change) has been reported by Sengupta and Gupta (1971), Masuda (1978),
Antoranz and Velarde (1978, 1979), Schmitt and Lambert (1979), Riahi (1983), Worthem et al.
(1983), and Bhattacharjee (1988a-c).

Even though our analysis is limited to horizontally unbounded layers, work for single-
component fluids not undergoing phase change (Homsy and Hudson 1971a; Btihler and Oertel
1982) suggests that for fix_ finite aspect ratios (ratio of mold radius to hei ht) our redicnon
be qualitatively correct if D._ R^/g (a Froude number w h,_,.o t_ :_ .,__ __g_ ,..P. " fi_ is w!ll
small. For the onset of thermal'_onvection i...... :_:_ u,.,,. "o '_ me molo ragms ) is sumclently

. iutatmg water or mercury myers heated from below,
the excellent qualitative agreement between linear stability theory for a horizontally unbounded
layer (Chandrasekhar ]953; Chandrasekhar and Elbert 1955; Nakagawa and Frenzen 1955) and

experimental work for finite aspect ratios (Nakagawa and Frenzen 1955; Fultz and Nakagawa
1955; Goroff 1960) clearly demonstrates the potential of the Coriolis acceleration to suppress
buoyancy-driven convection in a rotating fluid.

In this work, we use linear stability analysis to study the effect of the Coriolis acceleration on

convective and morphological instability for alloys which solidify with a nominally planar
interface. This work serves to identify the mechanism by which Coriolis effects affect the onset of

convection in solidifying binary alloys. The analysis is illustrated by results for the Pb-Sn system
undergoing both plane-front and dendritic solidification, as well as for mercury cadmium telluride
undergoing plane-front solidifcation. The details of the analysis, and plots showing results
shown in the 1992 University of Illinois Ph.D. Dissertation of Alparslan Oztekin (currently at arethe
MIT Department of Chemical Engineering), in a paper co-authored with Dr. Ozteldn (Metallurgical
Transactions 23B, 73-80, 1992), and in preprints of two papers submitted to Journal of Crystal
Growth, copies of which are included in this report. Other papers are in preparation, and will besubmitted in due course.

2. Effect of Rotation on Plane-front Solidification of Pb-Sn

Earlier work by Coriell et al. (1980) established that plane-front solidification of Pb-Sn alloys
can become unstable with respect to either a buoyancy-driven convective mode or a morphological
mode. We have considered the effect of rotation on the onset of instability in this system.

To test our code, we first considered the nonrotating case, and compared our results to those
of Coriell et al. The neutral curves were generally similar to those shown by Coriell et al. The
only qualitative difference was that, in our work, several new oscillatory neutral curves were found
to branch from steady neutral curves found by Coriell et al. and in the present work. We believe
that our detection of these additional oscillatory neutral curves (which in each case lie well above
the critical value of c**and are hence of no practical consequence) is due to use of a numerical
technique which simultaneously computes a large number of temporal eigenvalues at each

combination of coo and VI, as opposed to the shooting technique of Coriell et al., which
individually computes the temporal eigenvalues by a one-point iteration scheme.

Our results are described in a paper in Metallurgical Transactions (23B, 73-80, 1992). We

present our princ!pal results in terms of stability boundaries in the Vl-C* plane, where V x is the
growth rate and c**is the bulk concentration of tin. The critical value of c**(below which the plane-
front solution is stable) on the convective branch is an increasing function of the rotation rate f/o at
any value of Vl, clearly indicating the inhibitory effect of rotation on the onset of buoyancy-driven
convection. We note that for V_ = 5 la sec -1, rotation at f20 = 500 rpm increases by slightly more
than two orders of magnitude relative to the nonrotating case the critical Sn concentration above

which the plane-front solution becomes unstable. We further note that the morphological branch is
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unaffected by rotation, whereas as f_0 increases, the value of V_ at which the onset of instability
shifts from the convective branch to the morphological branch decreases from about 40 p sec -1 in
the nonrotating case to about 27 I.t sec -1 for _ = 500 rpm.

For each value of t'_o, we see a local minimum near V I = 1 _t sec -I, with the minimum shifting
to smaller growth velocities and becoming relatively more shallow as D.0 increases. We note that
the maximum relative stabilization by rotation occurs near the local minimum, and that for t').0 =
500 rpm, the critical bulk concentration of Sn is increased more than a hundredfold. Although
Coriell et al. (1980) noted a local minimum in the stability boundary near V l = 1 la sec -1 in the

nonrotating case for the largest gravitational acceleration considered, they offered no explanation
for its existence. This minimum is a consequence of the fact that as V_ _ 0, the concentration

gradient G c = (k-1)psc**V_/(kpLoD) vanishes. As the temperature gradient is independent of c.. and

_s stabilizing, the critical value of c._ must ultimately, increase as V_ _ 0. (Of course, the weight
percent of the solute, c**, cannot exceed 100). As c** must initially decrease with increasing V_,

there must be a local minimum on the convective branch before c*,.can increase to join up with the
morphological branch of the stability boundary. This nonmonotonic dependence of c** on V I can
be interpreted in terms of the existence of four critical values of V l for certain values of c**. (We
note that for sufficiently large V_, c***ultimately increases on the morphological branch (Davis1990).

The remarkable stabilization obtainable at low growth rates (more than a hundredfold increase
in the critical value of c**at V 1= 1 I.t sec -I can be achieved by rotating the layer at 500 rpm for the
two values of G L considered) is undoubtedly due to the well-known Taylor-Proudman mechanism,
described by Chandrasekhar (1961). According to the Taylor-Proudman theorem, steady motion
parallel to the axis of rotation in a uniformly rotating inviscid fluid is prohibited at any nonzero

rotation rate. If this theorem were strictly applicable to a viscous fluid, the onset of steady
convection would be prohibited, since the flow in convection cells must have a vertical component.
Instead, in a viscous fluid, one sees an inhibition of the onset of steady convection, with the degree
of inhibition (expressed here as an increase in c**) increasing with D0. That the onset of oscillatory
convection is hardly affected is due to the fact that the Taylor-Proudman theorem applies only to
steady flows. It is also not surprising that the morphological instability is unaffected by rotation.
The morphological instability occurs at very short wavelengths, so the motion is almost
perpendicular to the solidification front (i.e., aligned with the axis of rotation). Hence, the Coriolis
acceleration does not sensibly affect the morphological instability.

The relatively modest rotation rates required to significantly inhibit the onset of convection in

the Pb-Sn system make the proposed method an interesting candidate for a program of laboratory
experiments. Experiments might be conducted using a completely filled cylindrical mold,
thermally insulated on the vertical surface, and mounted axisymmetrically on a rotating horizontal
turntable. If the liquid at the top of the rotating mold is in contact with a gas or vacuum, it will
have a nearly paraboloidal free surface, on which the elevation above the point on the axis of
rotation is ,_z = t'_ r2/(2g). Although this configuration is consistent with rigid-body rotation, it
also leads to a nearly paraboloidal solid-melt interface. For high rotation rates or large mold

radius, this will in turn lead to significant radial variations in the solidified alloy. Also, cooling at
the radial boundary leads to a radial temperature gradient, which in turn leads to significant

centrifugal effects. Experiments of the type proposed above were initiated some time ago by
Copley (private communication) for the crystallization of ammonium chloride from aqueoussolution.

Finally, we note that for many binary systems, plane-front solidification does not occur at
practical growth velocities, and that the morphological instability results in dendritic solidification.
In this case, rotation might also suppress buoyancy-driven convection in the melt and interdendritic
liquid; this is discussed in §6.
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3. Combined Effects of Rotation and Reduced Gravity on Stability of
Plane-Front Solidification of Pb-Sn

The combined effects of rotation and reduced gravity on the stability of plane-front
solidification were studied for dilute Pb-Sn alloys. The onset of buoyancy-driven convection is
suppressed to a far greater degree than would be expected on the basis of earlier work, in which
suppression by the individual effects of reduced gravity (Coriell et al. 1980) and uniform rotation
(Oztekin and Pearlstein 1992) was demonstrated.

Our results are presented in terms of the effects of rotation and reduced gravity on the onset of
convection in molten Pb-Sn undergoing solidification by cooling from below. The individual
effects of reduced gravity have been considered by Coriell et al. (1980), who showed for several
combinations of the liquid-side temperature gradient Gr and rav" . -
stability boundary in the Vrc* nlan e consist_ ,-¢ n^_,._v__, g 'lty level 0 < _.-g/g0 < 1 that the
m ......... - .. ..% . o ,-,- ,,,,-,,_u_oglca_ anct convecnve branches, and that

convecnve orancn is staomzed by reducing _ (i e, at any V, the " "convecnve branch increases a "" ._" " -. t' cnncal value of c. on the
gravity) with G-= 200 K ,-_-_ decre_es_). Ozte_n_d Peylsteln_(1992)showed for ; = 1 (full

rotation stabilizes the convective branch (i.e., for any Vl, the critical value of c**on the convective
- ,.. .... ,1,- ",0 - u, _vu, zt_, _tro, ancl 300 rpm (their Figure 1) that

branch increases with I20). For example, with V_ = 5 I.t sec -1, the critical Sn concentration above

which plane-front solidification is unstable is more than two orders of magnitude higher at _0 "-
500 rpm than in the nonrotating case. They also showed that the morphological branch was

unaffected by rotation, and that as f20 increases, the value of V_ at which the onset of instability
shifts from the convective branch to the morphological branch decreases from about 40 i.t sec -1 in
the nonrotating case to about 27 _ sec-I for D.0 = 500 rpm.

- For G L = 200 K cm-t and t20 = 0, we find that stability boundaries for _ = 1, 10-2, 10--4, and

0-% each consist of some portion of the morphological branch (c** decreasing with increasing VI)
joined to a convective branch. The critical value on the convective branch increases with

decreasing _, showing the inhibitory effects of reduced gravity on the onset of buoyancy-driven
convection. Note that for V_ = 1/.t see-l, reducing the gravity level to 10--rg e increases the critical
Sn concentration at which plane-front solidification becomes unstable by about four orders of
magnitude relative to the full gravity case. We also note that the stabilizing effect of reduced

gravity is relatively less at lower solidification rates than at higher solidification rate. As expected,
the morphological instability branch is not affected by the gravity level, whereas as _ decreases, the
value of Vtat which the onset of instability shifts from the convective to the morphological branch
decreases from about 40/z see-1 for _ = l to about 1.3 _t see-4 for _ = 10-6.

For the same liquid-side temperature gradient (G_ = 200 K cm-1), we find that for small
rotation rates (Do = 5 rpm) the degree of stabilizanon achievable at each gravity level is
considerably larger than the sum of the individual effects of rotation and reduced gravity. As in the
full gravity case, the critical Sn concentration is increased more at lower soli " "
higher solidificati _ ,-,- t" _o--2 °.a r_ ...... dificanon rates than aton rate_ F_. =, _ ..

-_ ,, a.u _0 - _ rpm, me cnncal concentration is increased by
about an order of magnitude for V I = 0.5 la sec -1, however, the inhibition of convection for
V_ = 0.5 B see-1 is very small. In contrast to the rotating case, the inhibition of the onset of
convection by reduced gravity is larger at higher rotation rate. Hence the decrease of the
solidification rate at which the onset of instability shifts from convective branch to the
mor[?hological branch by reduced gravity is considerably more than the decrease by the rotation.
For_ = 10-2 and _0 = 25 rpm, the critical Sn concentration on the convective branch is more than
three orders of magnitude higher than for the nonrotating normal-gravity case at all solidificationrates.

_For G L = 200 K cm -1, stability boundaries for _ = 1 and f20 = 0, _ = 1 and _0 = 5 rpm, _ =
10 -.4 and f20 = 0, and _ = 10-4 and f20 = 5 rpm show that rotation more effectively inhibits the
onset of convection in the reduced gravity case than in the full gravity case.

The remarkable stabilization obtainable at low growth rates (more than a hundredfold increase
in the critical value of c,_ at V I = 1/.t sec -1 can be achieved by rotating the layer at 500 rpm for the
two values of G L considered) is again undoubtedly due to the well-known Taylor-Proudmanmechanism
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4. Stability of Plane-Front Solidification of Hgl.xCdxT e

In a binary (i.e., two-component) liquid for which the density does not depend monotonically
on temperature (e.g., has a local maximum) for some range of composition, we consider the
stability of plane-front solidification when the liquid is cooled from below. In contrast to the

normal case where the density depends monotonically on temperature and composition (e.g., the
Pb-Sn alloys considered by Coriell et al. (1980)), for certain combinations of the operating
parameters (solidification rate, nominal liquid-side vertical temperature gradient, and bulk solute
concentration) there can exist a critical value of the bulk mole fraction (C**) below which plane-
front solidification is unstable at all dimensionless solidification rates y, whereas in the normal case
plane-front solidification at any C** is linearly stable for all sufficiently small solidification rates.
Moreover, when the density varies nonmonotonically with temperature, there can exist a critical
value of the dimensionless solidification rate 7c such that for Y > 7e plane-front solidification is

unstable for all C**. In this case, for Y < 7c there is a finite range of C_ for which plane-front
solidification is stable. This latter result differs from the normal-case, for which at all

dimensionless solidification rates, plane-front solidification is stable for all values of C** lying
below some critical value. The stability boundaries and neutral curves, differing qualitatively from
those for the normal case, are discussed in terms of the existence adjacent to the liquid-solid
interface of a sublayer in which the thermal stratification is destabilizing. Results are presented for

solutions of CdTe in HgTe, of considerable importance due to the wide use of this pseudobinary
system in the fabrication of electro-optic detectors.

We have computed stability boundaries in the y-C** plane for four values of the di ..liquid-side temperature _",'_dient F - c,. b It, ,._,--, ,ira ........ . mensionless
--_" ..... _ , _ -_'.-'Lr'L0t.t_0_,_L) '_. _ne staomty bounctary consists of some
pomon or me morphological tgranch joined to a convective branch. For F = 8.2 x l0 n, above the
morphological branch disturbances grow in some wavenumber range and the plane-front solution

is unstable. Similarly, disturbances grow below the convective branch for some range of a. On
the other hand, below the morphological branch and above the convective branch, disturbances of
all wavenumbers decay and plane-front solidification is stable. Beyond the critical solidification
rate Yc = 2.70 x 10 --4 (V I = 1.02 p./sec) at which the convective and morphological branches

intersect, there is no stable range of bulk mole fraction C,.. For 1" = 1.64 x 10 -3, the stable region
in the y-C. plane is analogous to that for F= 8.2 x Ion. The morphological branch has shifted to
the right and the convective branch has shifted slightly downward. Their intersection occurs at a
higher y (Yc -- 5.61 x 10--4, V l = 2.12 l.t/sec), and the stable region is larger. Increasing F still more
leads to further enlargement of the stable region and larger values of % for F = 3.28 x 10 -3 and
6.56 x 10-3 (G L = 100 and 200 K/cm), respectively.

The qualitative differences between these neutral curves and stability boundaries and those
characteristic of the normal case in which density varies linearly with temperature and composition
(e.g., the Pb-Sn results of Coriell et al. 1980) lead us to consider how the equation of state affects
or alters the mechanism by which the onset of motion occurs during directional solidification of abinary liquid cooled from below.

We note that the mechanism responsible for the morphological instability is insensitive to the
net density stratification in the liquid, and is insensitive to variations of temperature and
composition outside a relatively thin layer adjacent to the interface. This is evident from a
comparison of the neutral curves and stability boundaries for the present case to those for Pb-Sn
(Coriell et al. 1980; Oztekin and Pearlstein 1992).

On the other hand, the onset of buoyancy-driven convection depends strongly on the nature of
the stabilizing or destabilizing temperature and solute gradients in the liquid, as well as on the

diffusivities of the stratifying agencies (Stem 1960; Baines and Gill 1969). The density ofabinary
liquid solidified by cooling from below can depend nonmonotonically on the vertical coordinate
even if the density depends monotonically on temperature and composition.

For binary liquids such as Hg l_xCdxTe for which the dependence of density on temperature or
solute mole fraction is not monotonic, solidification by cooling from below for some combinations
of the bulk mole fraction, liquid-side temperature gradient, and solidification rate can lead to a

configuration in which there exists adjacent to the interface a sublayer in which the positive
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temperature and solute gradients are destabilizing and stabilizing, respectively. If a liquid parcel in
this sublayer is displaced downward, it will lose its excess heat more rapidly than its excess CdTe

mole fraction, again because the thermal diffusivity is much larger than the solute diffusivity. Its
CdTe mole fraction will thus exceed that of the surroundings, and so the parcel will be less dense

than the surrounding liquid. The resulting buoyancy force will tend to move the parcel vertically
upward. Hence, the initial displacement engenders a restoring force, which can result in overshoot

of the parcel's initial (equilibrium) position. Such a configuration is in the "diffusive" regime, and
the motion is said to be "overstable", with the temporally growing oscillatory parcel displacements
leading to the oscillatory onset of convection.

The difference between the mechanisms by which the onset of motion occurs in configurations
in which the temperature gradient is everywhere stabilizing, and in those in which temperature is
destabilizing in a sublayer adjacent to the interface, is manifested in qualitative differences between
the neutral curves, and hence the stability boundaries, for the Pb-Sn and Hgl_xCdxTe systems.

The most notable feature of the neutral curves in the present case is that the onset of buoyancy-
driven convective instability is associated with an oscillatory mode, unlike the normal (e.g., Pb-
Sn) case. Moreover, for each wavenumber for which it exists, the corresponding oscillatory
neutral curve bounds the range of stable C** from below, rather than from above as in the normal
case. As the extremal values of C**on the morphological and oscillatory convective neutral curves

approach, the range of bulk mole fractions for which plane-front solidification is stable disappears.
This contrasts to the normal case, in which plane-front solidification is always stable for

sufficiently dilute solutions (i.e., C** lying below the minima of the morphological and steadyconvective neutral curves).

These features of the neutral curves have profound consequences for the stability boundaries
in the y-C** plane. For Hg 1 xCd,,Te, plane-front solidification can be unstable at all solidification
rates if the bulk mole fraction is chosen sufficiently low, as shown in §5. This is because the
effect of a destabilizing temperature gradient in the sublayer adjacent to the interface becomes
stronger as the bulk mole fraction decreases (due to a more prominent density maximum as the
composition approaches pure HgTe), and the stabilizing effect of the solute gradient diminishes

(because it is proportional to C**). On the other hand, in Pb-Sn directionally solidified by cooling
from below, plane-front solidification is stable for any solidification rate and liquid-side
temperature gradient if the solute bulk mole fraction is sufficiently low (Coriell et al. 1980; Oztekin
and Pearlstein 1992).

For Hgl_xCdxTe ' plane-front solidification can be unstable at all values of the bulk mole

fraction (less than C** = 0.2) if the solidification rate exceeds a critical value Yc. For sufficiently
small values of C**, plane-front solidification is unstable with respect to the onset of overstable

buoyancy-driven convection, because the stabilizing influence of the bottom-heavy solute
stratification is insufficiently strong to overcome the destabilizing temperature gradient in the
sublayer adjacent to the interface. For sufficiently large values of C**, the configuration is unstable

with respect to the morphological instability. As ), approaches ),¢ from below, the stable region is
"pinched" from below and above until at "fc it finally disappears. This situation differs from that

for Pb-Sn, for which plane-front solidification is stable in a region bounded above by the
morphological and convective portions of the stability boundaries.

In a single-component fluid with an unstably stratified layer overlying or underlying a stably
stratified region, convective motion is typically localized in the unstably stratified layer, but may
penetrate into the adjacent stable region. In his early analysis of the onset of thermal convection in

a water layer with the temperature maintained at 0°C at the bottom and in excess of 4°C at the top,
Veronis (1963) showed that convection occurs in the unstably stratified region and penetrates into
the stably stratified region as well. He determined the extent of penetration for different ratios of
the stably stratified layer thickness to the total layer thickness. He also found that convection in the

stably stratified region is viscously coupled to the more vigorous motion in the unstable layer.
Walton (1982) and Zangrando and Bertram (1985) have considered a doubly-diffusive fluid layer
with a uniform vertical temperature gradient and a nonuniform vertical solute gradient. Both of

these studies show the disturbances to be localized about the neighborhood of the critical depth at
which the salinity gradient reaches its minimum value. In our work, when the liquid-solid
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interface is adjacent to a sublayer in which the temperature gradient is destabilizing, the
disturbances associated with the oscillatory onset of buoyancy-driven convection are largelyconfined to that thermally unstably stratified sublayer.

As discussed above, the oscillatory onset of buoyancy-driven convection and the localization

of the disturbances are associated with the occurrence of a sublayer in which the temperature
gradient is destabilizing. Hence, the results should be expected to apply qualitatively to the

solidification of other binary or muhicomponent liquids in which (OpL/tgT)(OTL/OZ) changes signwithin the layer.

Our results demonstrate that nonmonotonic variation of density with temperature can have

dramatic qualitative effects on the onset of instability in an unbounded horizontal fluid layer
undergoing plane-front solidification. The existence of a sublayer in which the thermal
stratification is destabilizing should also have important consequences for the convection which

occurs in vertical Bridgman growth in ampoules of finite radius, as well as in zone melting and
other processes used to grow Hg 1 xCdxTe crystals from the melt. To date, however, these effects

have not been observed in simulations of buoyancy-driven convection in Hg I xCdxTe for these
geometries, which have used equations of state that do not properly account for _e nonmonotonic
dependence of density on temperature. The axisymmewic simulations of vertical Bridgman growth
by Kim and Brown (1989) employ a linear equation of state of the form (1), even though the CdTe

mole fraction in the liquid near the interface is about 0.075 in each computation and the density is
known to depend nonmonotonically on temperature for CdTe mole fractions up to at least 0.1. The

computations of Apanovich and Ljumkis (1991) for zone melting of Hg 1 .CdxT e use an equation
of state in which the density of Hg I xCdxT e is independent of temperature _or a CdTe mole fractionof 0.13.

5. Effects of Rotation on Stability of Plane-Front Solidification of
Hgl.xCdxTe

A linear stability analysis was used to assess the potential of steady uniform rotation about the

vertical axis to suppress the onset of convection during directional solidification of mercurycadmium telluride cooled from below. Since for sufficientl sm
does not depend monotonicall on tern ratur . " y all x the denslt.y, of Hgl_ Cd Te

Y pe e, there is a range of operaung conclmons (tiu_ C_Te
mole fraction, nominal solidification rate, and liquid-side temperature gradient) for which, adjacent

to the liquid-solid interface there is a sublayer in which the thermal stratification is destabilizing.
This differs from the normal case (i.e., binary alloys characterized by a linear e uati

such as Pb-Sn), in which the thermal stranficatlon Is stabilizing everyw_re.°nT_fuSt, at?n
Hg I _ Cd_Te melts there can exist a critical bulk CdTe mole fraction x** below which plane-front
soli_l-]_cat_on is unstable at all solidification rates VI, whereas in the normal case plane-front

solidification at any x** is linearly stable for sufficiently smallV Moreover, for Hg1 ,,Cd×Te there
can exist a critical solidification rate V1 such that for ;¢I< Vl p_ane-front solidificaff_n is unstable
for all x**. Our results show that modest rates of unifrrm rotation can significantly suppress the
onset of buoyancy-driven convection for the H g_q_ CdxT e system, and that rotation can
substantially increase the critical solidification rate Vi _eyond which plane-front solidification isunstable for all bulk CdTe mole fractions.

The stability boundaries consist of some ponio n of the morphological branch joined to an
oscillatory convective branch. For GL= 50 K cm-, the stability boundaries for f_o= 0, 25, 50,

and 100 rpm show that above the morphological branch, disturbances grow for some range of
wavenumber a and plane-front solidification is unstable. Similarly, below the convective branch

appropriate to each rotation rate shown, disturbances grow for some range of a. However,
between the morphological branch and the convective branch associated with each rotation rate
(i.e., for xZ < x**< x***),disturbances decay for all wavenumbers and plane-front solidification is
stable. Note that the morphological branch is unaffected by rotation, whereas as _o increases, the
convective branch is shifted downward. The critical bulk CdTe mole fraction x'*** on the

convective branch is a decreasing function of _o at any solidification rate. Clearly indicating the
inhibitory effect of rotation on the onset of buoyancy-driven convection_ Beyond the critical
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Olidi.fication rate (denoted by V_) at which the convective and mo holo i
ere _s no stable range of bulk (_dT rile f,-m_._^- - -,-, rp g cal branches intersect,

at _" '-- "- "-'" _ . . . e m ....... ,,u, _... _nus, plane-front solidification is ,_u_ o u_K t..o£e mole rracnons for sufficiena,, _,;-h _,:.,:___ _. _ unstable
rate V " at which the mo " ,-j -,_- .,u_mmcanon rates, lhe cnncal sohd_ficatlon
• I. rpholog_cal and convechve branches intersect occurs at higher x** withincreasing rotation rate f2o The critical val,,,, xzcr +_ "..........

= • " . ",- *_ _ mt;_easea oy more than a factor of ten at
_2o 100 rpm relanve to the nonrotatmg case. 'We also note that the con "relativel shallow ' ' 1 vecnve branch has ay local rmmmum near V - - • .

- _ - I - 1 I.t sec , the location of which depends only weakly
on t2o. Jlaus, tor a given rotation rate, operation at the solidification rate corresponding to this
local minimum allows plane-front solidification to be conducted stabl

For G_=25Kcm -1 o,,,_ c_ =,_ ^__, ,^ ..... y at the lowest value of x .
reducin tlqe r """:' ?-'_' - u. mJu at_ rpm, the morphological branch is shifted to th_,,f,

g ange of sohdlficatlon rates and bulk mole fractions for which plane'--front
solidification is stable, as expected on the basis of the results of Coriell et .
without rotation. On the oth _. .... al (1980) for Pb-Sn
_ _ . _ • er hand, the convectwe branch _s started downw •

GrL-_50 __crn ' case, corresponding to an increase in the ran_ of _mhl,_ ^ _dsrelatlve.!o the
•, _ nut_ mat oecreasin_ me tem-er_h,,-,_ ,,_a+_.. ,. ........... g e ..... _-_ VlJC_tt£ng congllllOnS.

,:, t- ..... t5' aua_nt na_ very ll[tle erIect on _e onset of convection in
a nonrotating layer, but reduces the range of stable bulk CdTe mole fractions by more than twofold
for a layer rotating at 100 rpm. The critical value of V, is higher bv more than
_o = 109 rpm relative to the nonrotatin case. althou_,l_, ,- a,_,,.,,_ ".-,,-._,_..,_... a factor of five.at
:actor ot ten nre ic ,,- _ -- g-I . _ _ .h_ ...,.s:,.... u_ ntaomzanon is less man me

•. ,_ <:1 ted fo. ,_%_ 25 K cm . Although the reductlon in x ha "the cntacal value of V, a . . . .** s very httle effect on
th ......... I. t wh_ch the morl?holog_cal and convectwe stabd_t boundarie _ .c -umotaung case, tor s_ = 100 ,'_m ,h,_ ,._,_.., _., .... ,, .... Y s ntersect in

o -v ,-,. ,.,,,va_ valu_ Ol v, oecreases b a fthe temperature gradient is reduced I y actor of three when

As discussed for the Pb-Sn case (0ztekin and Pearlstein 1992), at each value of I) 9 the
of morphological instability occurs via a short wavelength (large wavenumber) instability, onsetwhile
convection sets in via disturbances with relatively longer wavelengths. In the following section
this point is discussed in the context of the mechanism by which rotation inhibits the onset ofconvection.

During directional solidification of binary alloys cooled from below and characterized by a
linear equation of state, with rejection of a light solute at the liquid-solid interface (e.g., Pb-Sn),

the vertical temperature and solute gradients are stabilizing and destabilizing, respectively,
throughout the liquid layer. In the Pb-Sn system, the onset of buoyancy-driven convection occurs
via monotonically growing disturbances, as shown by Coriell et al. (1980). However, for the

pseudobinary Hg 1 x CdxTe system, the CdTe gradient is everywhere stabilizing, and adjacent to
the liquid'solid interface there can exist a sublayer in which the thermal stratification is
destabilizing. In this system, the onset of convection occurs via oscillatory disturbances. We note
that the system is unstable at the indicated values of G, for all V, when x is
corresponding to the absence of a stably o,..-...:e:._a .t_. ,_ .., , .. .. sufficiently small,

..... ., at_at£_l_..I tmn _qulo myer aojacent to the interface for smallX ,

For Pb-Sn alloys we have shown (0ztekin and Pearlstein 1992) that significant suppression of
the onset of buoyancy-driven convection occurs at modest rotation rates, and is due to the well-

known Taylor-Proudman mechanism. Again, the morphological instability is unaffected by
rotation since it occurs at very short wavelengths, with the motion nearly perpendicular to the
solidification front (i.e., aligned with the rotation axis).

6. Effect of Rotation on Stability of Dendritic Solidification of
Pb-Sn

We have assessed the stability of the one-dimensional dendritic solution for Pb-Sn melts
undergoing solidification by cooling from below. The two-phase mushy zone is modeled as a
porous medium with anisotropic permeability. The local porosity, as well as the locations of the
boundaries separating the solid from the mushy zone and the mushy zone from the liquid, are taken

to be dynamical variables. The one-dimensional basic state, computed using a thermodynamically
self-consistent nonlinear model of solidification, exists for only some combinations of the
operating parameters (solidification rate, nominal liquid-side vertical temperature gradient, and bulk
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solute concentration). A division of the parameter space according to the existence and stability of
solutions corresponding to plane-front and dendritic solidification is presented and discussed for
the Pb-Sn system. Under some conditions the dendritic solution exists when plane-front
solidification is linearly stable with respect to morphological disturbances. This point is discussed
in light of previous work on nonlinear morphological stability. For a given liquid-side temperature
gradient, the dendritic solution is unstable below a critical solidification rate, nearly independent of
composition. As the imposed temperature gradient decreases, the critical solidification rate
decreases, and the dendritic solution is stabilized.

The thermophysical properties of the liquid and solid phases are as used by Coriell et al.

(1980) at reference conditions corresponding to pure lead at its melting point. (The diffusivity of
Sn in Pb used corresponds to an infinitely dilute solution.) The two-phase mushy zone is modeled
as a porous medium with anisotropic permeability. The local porosity, as well as the locations of
the boundaries separating the solid from the mushy zone and the mushy zone from the liquid, are

taken to be dynamical variables. The one-dimensional basic state, computed using a
thermodynamically self-consistent nonlinear model of solidification, exists for only some
combinations of the operating parameters (solidification rate, nominal liquid-side vertical

temperature gradient, and bulk solute concentration). A division of the parameter space according
to the existence and stability of solutions corresponding to plane-front and dendritic solidification is
presented and discussed for the Pb-Sn system. Under some conditions the dendritic solution
exists when plane-front solidification is linearly stable with respect to morphological disturbances.

This point is discussed in light of previous work on nonlinear morphological stability. For a given
liquid-side temperature gradient, the dendritic solution is unstable below a critical solidification
rate, nearly independent of composition. As the imposed temperature gradient decreases, the
critical solidification rate decreases, and the dendritic solution is stabilized.

For C** = 0.2, T = 2.59 x 10-2, and F = 7.12 x 10-2 (corresponding to dimensionless
solidification rate and liquid-side temperature gradient of V_ = 80 p. sec-I and G L = 50 K cm-1 for
Pb-Sn), the solute profile varies almost linearly in the mushy zone, within which almost all of the
solute variation is confined. On the liquid side of the liquid/mushy-zone interface, there is a solutal

boundary layer, which is thin compared to the mushy-zone thickness. For the mushy zone the
lengthscale is the thickness Hm, the dimensional value of which is 1.685 cm for this combination
of GL, V_, and C**, and for the liquid the lengthscale is the diffusion length, which in this case is
3.75 x 10-3 cm.) The volume fraction is largest (_ = 1) at the liquid/mushy-zone interface, and
decreases monotonically to a nonzero value at the mushy-zone/solid interface. These results show

that as C** increases, the porosity distribution becomes more linear and its value at the mushy-
zone/solid interface increases monotonically. The mushy-zone thickness (H m = 0.527 cm) for C**
= 0.5 is much smaller (so that the liquid in the porous medium is more mobile) than for C® 0.1,0.2, or 0.35. --

For T = 3.24 x 10-2 (V x= 100 i.tsec-1), 1.62 x 10-2 (V I = 50 I.t see-l), 9.72 x 10- 3 (V i = 30 I.t
see-l), respectively, Hrn is a strong function of F and C._, depends relatively weakly on T, and

assumes a maximum near C** = 0.2 for each combination of solidification rate and temperature
gradient. This maximum occurs because the composition difference ACm = Cm(1 ) _ C (0)
between the top and bottom of the mushy zone reaches a maximum near C** =0.2, and the mu'_hy-

zone composition varies almost linearly with z. As AC m decreases to zero as C** approaches CE,
Hm asymptotically decreases to zero. The decrease of H m as C** decreases to the left of the
maximum H m is again due to the fact that ACm decreases with decreasing C**. For F = 7.12 x 10- 3

(Gt, =.5 K cm-1), H m is a decreasing function of T- For F = 7.12 x 10 -2 (G L = 50 K cm-l), the

variation of H m with y is much weaker, and for F = 0.285 (Gt. = 200 K cm-1) is nearly
independent of T. We also note that the mushy-zone thickness decreases strongly with increasingtemperature gradient.

For F = 7.12 x 10 -2 (GL= 50 K cm -1) the neutral curves (Tversus a) correspond to steady
onset of buoyancy-driven convection; we have found no evidence for the oscillatory onset of
instability in the dendritic solidification of Pb-Sn alloys. For given values of C., and F, the critical
solidification rate (denoted by T°) is the maximum point on each neutral curve and determines one
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point on the stability boundary. For y > 7', the one-dimensional dendritic basic state solution is
stable for all wavenumbers a, whereas for y < y" it is unstable for some range of a.

For C** = 0.1, the critical solidification rate (at the extremum) is y -- 2.20 x 10 -2 (V t = 68
sec -1) and the critical wavenumber is a = 0.32. For C,,, = 0.2 the critical solidification rate assumes
a maximum [y" = 2.59 x 10- 2 (V l = 80 p. sec-1)] before shifting slightly downward to smaller
solidification rates [y = 1.98 x 10 -2 (V_ = 61 t.t see-l)] for C** = 0.55. We note that the stable
range o_ sonaincation rates is smallest for (2, = 0.2, which will be discussed below in connectionwith the stability boundaries.

Examination of the vertical structure of the disturbance amplitudes of vertical velocity and
temperature in the liquid and mushy zone, solute mass fraction in the liquid, and volume fraction in
the mushy zone shows that the disturbances correspond to the least stable mode (i.e., that with
least positive or most negative Re(a)).

For C** = 0.55 and F = 7.12 x 10-2, inspection of the disturbance amplitudes at the critical
conditions y = 1.976 x l0 -2 (V I = 61 _ sec-l) and a = 0.32 (as determined from the neutral curve)
shows that the vertical velocity disturbance assumes a maximum just above the liquid/mushy-zone
interface and decays strongly in both layers. We also note that the depth of penetration of the

convective disturbance in each layer is of the same order. The structure of the temperature
disturbance is similar, except near the mushy-zone/solid interface where the temperature
disturbance does not approach zero. This is due to the fact that the boundary conditions require
that on the deformed mushy-zone/solid interface the solute mass fraction in the interdendritic fluid
be equal to the eutectic mass fraction. Thus, the relationship between the temperature and solute
mass fraction disturbances in the mushy zone requires that the disturbance temperature be nonzero

whenever that interface is deformed. Disturbances to the liquid composition and mushy-zone
volume fraction are largely confined to very thin layers adjacent to the liquid/mushy-zone interface

Our principal results are discussed in terms of a division of the y-C** plane for four values of

F. We have determined the regions in which the one-dimensional dendritic solution exists, along
with information regarding its stability and the stability of the one-dimensional plane-front solution

(which exists for all combinations of C**, y, and F). Each region is characterized according to
whether the one-dimensional dendritic solution exists (and if so, whether it is stable), and whether
the plane-front solution is stable with respect to morphological and convective disturbances (Coriell
et al. 1980; Oztekin and Pearlstein 1992).

For F = 0.285 (G L = 200 K cm-1), the one-dimensional dendritic solution exists in regions 1
and 2, and is stable at sufficiently high solidification rates (region 1) and unstable for lower values

of y (region 2). In regions 3-5, no one-dimensional steady solution of the governing equations
exists. The plane-front solution exists in regions 1-5, but is unstable with respect to morphological
instability in regions 1-3. The plane-front convective stability boundary (curve C) separates region
4, in which the plane-front solution is morphologically stable but convectively unstable, from

region 5, in which the plane-front solution is stable with respect to both morphological and
convective disturbances. In summary, the one-dimensional dendritic solution is stable in region 1
and the one-dimensional plane-front solution is stable in region 5; elsewhere the plane-front
solution is unstable and the dendritic solution either does not exist or is unstable.

The topology of the division of the ?-C** plane becomes more complex as the temperature
gradient decreases. For F = 7.12 x 10-2 (G L = 50 K cm-1), a new region (6) exists in which both

the plane-front and dendritic solutions are stable. For the plane-front solution, the morphological
and convective stability boundaries have shifted downward, and stable plane-front solidification is
confined to a smaller part of the y-C** plane than for F = 0.285. However, for this smaller

temperature gradient, dendritic solidification is stable for a larger range of y and C® relative to the
F= 0.285 case. For F = 7.12 x 10-2, the dendritic stability boundary intersects the dendritic

existence curve just above the latter's intersection with the plane-front morphological stability
boundary. Note also that the turning point on the dendritic stability boundary is more pronounced.

• For F = 3.56 x 10 -2 (Gt. = 25 K cm-1), the dendritic stability boundary intersects the dendritic

existence curve well below the plane-front morphological stability boundary, so that the part of the
y-C** plane in which the plane-front solution is stable and the dendritic solution exists has been

divided according to the stability of the dendritic solution. In region 6, the dendritic and plane-
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front solutions are both stable, as for F = 7.12 x 10 -2, while in region 7, the dendritic solution is

unstable. We note that the mushy-zone thickness predicted in the lower part of region 6 is

exceedingly small; one can conceive of more sophisticated solidification models (e.g., specifically
predicting cellular solidification and imposing a threshold criterion on mushy-zone thickness for

dendritic solidification) that would not predict the existence of a dendritic solution in the lower partof region 6.

For F = 7.12 x 10 -3 (GL= 5 K cm-1), the dendritic solution exists in a part of the 'y-C** plane
(region 8) in which the plane-front solution is morphologically stable and convectively unstable.
Here, as in region 2, both the dendritic and plane-front solutions exist, but neither is stable. The
characteristics of the other regions are unchanged. Note that the region in which dendritic
solidification is stable becomes larger with decreasing temperature gradient. For C**< 1 x 10-5 we

have not determined the boundary separating regions 6 and 7 because, as discussed above, the
basic state mushy-zone thickness predicted by our model becomes exceedingly small as the bulk
mass fraction decreases further.

Our analysis of the conditions under which the governing equations admit a steady one-
dimensional dendritic solution for Pb-Sn alloys, and the conditions under which that solution and
the one-dimensional plane-front solution are stable, allows for a more complete discussion of the
solidification regimes for binary alloys than has heretofore been possible.

That a one-dimensional steady dendritic solution exists for only some combinations of the

temperature gradient, solidification rate, and bulk mass fraction is not surprising since this basic
state is determined as the solution of a nonlinear system of ordinary differential equations, for
which a solution need not exist. The boundary in the parameter space within which the dendritic
solution exists is determined by two constraints. One is that the volume fraction at the

liquid/mushy-zone interface is unity and Cannot exceed that value within the mushy zone. Hence,
the vertical derivative of the volume fraction at the liquid/mushy-zone interface should be
nonnegative. This condition is satisfied in the region above the lower branch of the dendritic
existence curve. The other constraint is that the solute mass fraction in the interdendritic fluid
cannot exceed the eutectic composition, C E. In the basic state, the interdendritic solute mass
fraction depends monotonically on the vertical coordinate. Therefore, if the solute mass fraction at

the liquid/mushy-zone interface is less than CE, this constraint can be satisfied everywhere in the
mushy zone. Below the upper branch of the dendritic existence curve, the latter constraint is
satisfied, and the mushy-zone thickness asymptotically approaches zero as this branch of the curve

is approached from below. Hence, a one-dimensional dendritic solution exists only in the region
between the two branches of the dendritic existence curve.

When the plane-front morphological stability boundary is crossed, a cellular interface
develops. As the solidification rate increases past the critical value, the ceils becomes deformed

and deepen. The formationand evolution of the cells have been studied theoretically by Ungar and
Brown (1984) and Ungar et al. (1984). For still larger solidification rates, dendritic solidification

occurs, with dendrites typically consisting of long vertical stems with secondary and tertiary
branches. The development of the cellular interface and transition to dendritic solidification were
observed experimentally by Trivedi (1984) and Venugopalan and Kirkaldy (1984). We thus
conclude that the part of region 3 below the lower branch of the dendritic existence curve is a
region of cellular solidification, in which the plane-front solution is morphologically unstable and
the dendritic solution does not exist. The experimental evidence showing that dendritic
solidification occurs when either the bulk mass fraction or solidification rate is increased for fixed

temperature gradient is consistent with the location and character of the dendritic regions 1 and 2 inour results.

For a given solute bulk mass fraction, there exists a critical solidification rate above which the
one-dimensional dendritic solution is stable with respect to infinitesimal disturbances. For all
values of F dendritic solidification is least stable with respect to buoyancy-driven convection for

solute mass fractions near 0.2 (the value at which the dendritic stability boundary has a turning
point). This occurs because the mushy-zone thickness H m and composition difference ACm attain
their maxima for this C**, independent of temperature gradient and solidification rate. If the

Rayleigh number R m we define for the mushy zone is proportional to ACmH m (Worster 1992),

12



W

W

n

g



L--

W

=--

maximum destabilization for the Pb-Sn system occurs for C** near 0.2. Fowler (1985) defined a
Rayleigh number R = (o_c- 0Vr) mLp 0 g 17,,_i ' where 1_ is a monotonically increasing function of
the permeability, and showed that there is a critical value Re., 1/(C - C such that
dendritic solidification is stable with resnect t.... " _: ...... E **ks . . "f R < Pc, then

v v _,,,all ul_turoances. Note that for Pb-Sn, R e
assumes a minimum near (2, = 0.2. Thus, there is a critical solidification rate above which the
condition R < R e is satisfied, and dendritic solidification is convectively stable. Our numerical
results are thus consistent with the approximate analytical results of Fowler (1985) and Worster(1992).

We also note that the stable range of 3, and C** grows as 1" decreases. This is due to the fact
that volume fraction (and hence permeability) decreases with decreasing temperature gradient, so
that the permeability of the mushy zone decreases and the onset of convection is suppressed. That

is also consistent with Fowler's result, since the Rayleigh number decreases as permeabilitydecreases.

The amplitude of the disturbance to the vertical velocity assume a maximum on the liquid side
of the liquid/mushy-zone interface, and decay strongly away from the interface. The onset of
buoyancy-driven convection is largely localized in the liquid just above the interface and in the
of the mushy zone where the permeability is highest (near the liquid/mush zone interface
interdendritic fluid farther from th-' 1;n,.:._, .... L.... Y- " ). _Fha_e

,- ,_qtaaut_nu_ny-zone interface is essentially stagnant. For =
.12 x 10--2 (GI, = 50 K cm-l), the critical wavenumber ranges from approximately 0.25 to 0.35,
epending on C**, so that the corresponding convective wavelength (0 06 cm is sinai

the mushy-zone thickness (H = 0 311 cm for c, _ 13_x 1-... ,__.2 ) 1 com.p_ed to
m • ".--**-- -...,..,j, out mrge compared to the alrmsion

length for a typical solidification rate (H E = DL/V l = 4 92 x 10-3 cm for V- = 61 - se,--1 o, ,_,_critical
(1992). value of _,). Th,s type of onset corresponds to the mushy layer mode descriige_ by" Wors_er

That a one-dimensional dendritic solution exists under conditions for which plane-front
solidification is linearly stable with respect to morphological disturbances might at first seem
inconsistent. However, upon closer examination this result is less surprising, since the plane-front

stability analysis is restricted to infinitesimal disturbances (Coriell et al. 1980). In fact, in part of
the parameter space where the plane-front solution is linearly stable, it is unstable with respect to
subcritical ("finite amplitude") morphological disturbances (Wollkind and Segel 1970; Alexander et

al. 1986; Ungar and Brown 1984). Thus, in the region in which the plane-front solution is linearly
stable, it is not surprising that we also find a one-dimensional dendritic solution.
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Coriolis Effects on the Stability of Plane-
Front Solidification of Dilute Pb-Sn Binary Alloys

ALPARSLAN OZTEKIN and ARNE J. PEARLSTEIN

The possibility of using steady uniform rotation about a vertical axis to suppress the onset of
buoyancy-driven convection during solidification of a binary alloy is considered using a linear
stability analysis. For Pb-Sn alloys, our results clearly show that the onset of convection in a

horizontally unbounded layer can be suppressed significantly at modest rotation rates. Specif-
ically, "plane-front" solidification is linearly stable at higher Sn concentrations in a rotating
configuration than in a nonrotating one. The predicted inhibitory effects of rotation on convec-
tion are discussed in terms of previous experimental and theoretical studies of the effect of
rotation on the onset of buoyancy-driven convection in single-component fluids heated from
below and in binary fluids subject to thermal and solutal stratification.

= =

=_=

I. INTRODUCTION

DURING directional solidification of alloys, it is fre-

quently desired to produce large single crystals with very
low densities of macrosegregation defects and other im-
perfections. In principle, this can sometimes be achieved
by "plane-front" solidification, in which the melt-solid

interface remains perfectly planar. In such a case, the
solidification process would be steady in a reference frame
moving with the interface, and the only spatial variation
would be in a direction normal to the interface. How-
ever, in real systems, several instabilities can cause de-

partures from the nominally steady and one-dimensional
plane-front case.

First, the solid-liquid interface may be subject to the
so-called morphological instability, which has been stud-
ied extensively since the early work of Mullins and
Sekerka. m This instability causes deformation of the
nominally planar interface, ultimately leading to for-
mation of a two-phase "mushy zone" of dendrites and

interdendritic liquid. Departures from one-dimensionality
and steadiness in the mushy zone result in nonuniform
distribution of solute in the solidified material.

Second, the density of a binary or multicomponent melt
depends on both temperature and composition. When an
alloy is solidified by cooling from below, rejection of
solute(s) at the growing interface is potentially destabi-
lizing if the solute-enriched liquid just above the inter-
face is less dense than the warmer overlying bulk liquid.
Under some conditions, this adverse solute gradient
overcomes the stabilizing temperature gradient, leading
to convection in the melt. This fluid motion provides
another transport mechanism, besides molecular diffu-
sion, for redistributing solute(s) into the bulk liquid from
the relatively enriched region near the interface. Con-
vection in the melt is often referred to as thermosolutai
convection or, because the diffusivities of heat and sol-
ute are different, as doubly diffusive convection.
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Convective and morphological instabilities in a binary
alloy undergoing directional solidification were first

studied by Coriell et al. f2} using a linear stability anal-
ysis. These authors showed that motion may occur due
to either morphological or convective instabilities and

that the buoyancy force does not sensibly alter the cri-
teflon for onset of morphological instability, which oc-
curs at higher wavenumbers than does the buoyancy-driven
instability. Subsequent work was reviewed by Glicksman
et al. TM and Sekerka and Coriell. _4]More general discus-
sions of the effects of convection on plane-front and den-
dfltic solidification have been given recently by Worster, [_1
Davis, 16l Huppert, [7] Polezhaev, [8] and Mi.iller. [9]

Buoyancy-driven convection in the melt has been shown

to be the dominant factor in the formation of "freckles,"
a macrosegregation defect deleterious to the mechanical

properties of directionally solidified alloys. The forma-
tion and characterization of freckles in nickel-based

superalloys were first studied experimentally by Giamei
and Kear._l°l Poirier et al.Ul) investigated macro-
segregation in electroslag ingots, showed that convection
in the melt results in freckling in the solidified material,
and suggested that rotation might reduce freckling. Ridder
et all 12) studied the effects of fluid flow on macro-

segregation in nominally axisymmeu-ic ingots and showed
that melt convection results in macrosegregation in the

mushy zone. In a theoretical study of a binary alloy so-
lidifying radially inward, Maples and Poirier [_31 con-
cluded that macrosegregation results from natural
convection in the mushy zone driven by nonuniform
temperature and solute distributions. A recent review of
the effects of buoyancy-driven convection on macro-

segregation in binary and pseudobinary nonmetallic sys-
tems have been given by Miiller. [9)

One means by which the onset of convection can be

inhibited in a density-stratified fluid layer is to subject
the layer to a magnetic field aligned parallel or perpen-
dicular to the stratification. [°] For horizontal Pb-Sn layers
solidified from below at several growth velocities, Coriell
et al. t2) showed theoretically that the critical Sn concen-

tration above which instability occurs can be increased
an order of magnitude by applying a vertical magnetic
field of the order of one tesla. This technique requires
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that the liquid be an electrical conductor and so is ap-
plicable to metallic alloys, semiconductors, and aqueous
solutions.

Macrosegregation might also be controlled by increas-
ing or decreasing the magnitude of the gravitational ac-
celeration or changing its direction. Alexander et at. II4[

and Heinrich et al. 115"16[theoretically studied the effect
of reduced gravity on macrosegregation in directionally
solidified alloys. These authors suggested that macro-
segregation in alloys can be reduced by solidification in
a low-gravity environment. Miiller ]17]and Weber et al. [18]

have recently discussed solidification under conditions
where the magnitude of the body force is greater or less
than that of normal gravity.

Both gravity and an external magnetic field are body
forces which act on the liquid. As opposed to contact
forces such as pressure, viscous stress, and surface ten-
sion, which act on the surfaces of a fluid element, body
forces act on the mass of a fluid element. Hence, their

local strengths are proportional to the local fluid density.
In addition to gravitational and magnetic body forces,
there are other "pseudo-body forces" which manifest
themselves as fictitious accelerations (centripetal and
Coriolis) when the reference frame to which the fluid
motion is referred undergoes steady rotation relative to
an inertial frame. (An additional fictitious acceleration,
with which we will not be concerned, manifests itself if
the rotation of the noninertial frame relative to the in-

ertial frame is unsteady.) Although these accelerations
do not correspond directly to forces (as in the case of
gravitational acceleration), they have the same mathe-
matical form as accelerations associated with body forces
and can have dynamical consequences equally as pro-

found as the gravitational and magnetic forces discussed
above, t|m In light of this, and the fact that modification
of the gravitational field or imposition of an external
magnetic field may not always be possible, the possi-
bility of using rotation to suppress the onset of convec-
tion in a liquid undergoing directional solidification is of
interest.

Several effects of rotation on solidification have been

discussed by Schulz-DuBois. i2°] The experiments of
Kou, [2_]Kou et al. ,[221Sample and Hellawell, [231Mi.iller, [17]
and Weber et al. ]lm have shown that rotation can sig-

nificantly reduce the degree of macrosegregation in bi-
nary alloys directionally solidified under plane-front or
dendritic conditions. Kou and Kou et al. studied the ef-

fect of steady rotation about a vertical axis on freckle
formation in Sn-Pb alloys. Sample and Hellawell con-
sidered solidification of the transparent alloy NH4CI-H20
in a crucible rotating about an axis inclined between 0
and 30 deg with respect to the vertical. Miiller ]|7] and
Weber et al. have studied the effect of rotation on the

growth of Te-doped InSb crystals and have shown that
striations can be suppressed at sufficiently high rotation
rates. These studies show that the degree of macro-
segregation (freckles and striations) can be significantly
reduced by rotation.

There are two means by which steady rotation about
a fixed axis can influence the motion of a fluid. In terms

of a reference frame rotating with constant angular ve-
locity f_ about an axis, these correspond to the centri-
petal and Coriolis accelerations, for which the terms

pLf_ X ffl X r and 2pL_ x u, respectively, are added --
to the momentum equation. Here, r is the position vector
measured from the axis of rotation, u is the local fluid

velocity relative to the noninertial reference frame, and w
PL is the local density of the liquid.

Previous theoretical studies of the effects of rotation

on the onset of buoyancy-driven convection have been
restricted to cases where no solidification occurs. For a

horizontally unbounded layer of a single-component fluid,
Chandrasekhar, [24]Chandrasekhar and Elbert, [_[ and Niiler

and Bisshopp I26]have shown that steady uniform rotation
about a vertical axis can significantly inhibit the onset u
of convection, with the Coriolis-related Taylor-Proudman
mechanism [27]playing the dominant role. The effects of

centripetal, Coriolis, and gravitational accelerations on I
convection in horizontally confined rotating fluids in cy-
lindrical containers of various aspect ratios were consid-

ered in an early series of articles by Homsy and
Hudson. [28-32+More recently, for a single-component fluid, j
Weber et al. |lm have computed buoyancy-driven flows
equivalent to those which can be driven by a temperature
gradient maintained between the ends of an otherwise
insulated right circular cylinder rotating at constant an- III

gular velocity about an axis perpendicular to and inter-
secting the cylinder axis but not passing through the
cylinder. Three-dimensional computations, in which the
variation of the magnitude of the centripetal acceleration W

l_ x 1_ x r along the cylinder axis was neglected (a
good approximation when the cylinder length is small

compared to the shortest distance between the axis of
rotation and the cylinder), were performed with the term
accounting for the Coriolis acceleration 2I'_ x u either
included or omitted. Weber et al. found excellent agree-
ment between experiment and computation when the W
Coriolis acceleration was included.

For a binary fluid, Pearlstein |33[ has shown that the
Coriolis acceleration can either stabilize or destabilize a

horizontally unbounded layer, depending on the values u
of the Prandtl and Schmidt numbers, the dimensionless

rotation rate (expressed in terms of a Taylor number),

and the dimensionless temperature or solute gradient w
(expressed in terms of thermal and solutal Rayleigh
numbers). Other work concerning the effect of rotation
on doubly diffusive convection in binary fluids (with no
phase change) has been reported by Sengupta and w
Gupta, f34| Masuda, ml Antoranz and Velarde, 136"37]Schmitt
and Lambert, [3m Riahi, [39] Worthem et al.,i4°] and

Bhattacharjee.[41.42"43]
In this work, we use linear stability analysis to study

the effect of the Coriolis acceleration on convective and

morphological instability for alloys which solidify with
a nominally planar interface. This work serves to iden-
tify the mechanism by which Coriolis effects affect the "
onset of convection in solidifying binary alloys. The
analysis is illustrated by results for the Pb-Sn system.

II. BASIC STATE AND

LINEAR DISTURBANCE EQUATIONS

We adopt the model of solidification used by Coriell
et al., _2[ in which the Oberbeck-Boussinesq equations
govern motion in the liquid. In a reference frame trans-
lating with the nominally steady velocity (V_) of the
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moving interface and rotating with constant angular ve-
locity fl, the basic state

u = (0, 0, - ev,)

m'-C_&°KLGL[ (7=t =TM + +-- l--exp ----
• k psVi

[1]

PLO KL

[2]

dL=c_ I + _- exp P_Lz [3]

: _ Ts=T_,+_+-- 1 -exp - z [4]
! _ _ k Vt Ks /

is the same used by Coriell et al., where Q, /_t, alL, and
Ts are, respectively, basic state values of velocity, tem-

perature, and solute concentration in the liquid and tem-
perature in the solid, KL and Ks are the thermal
diffusivities of the liquid and solid, respectively, DL is
the diffusion coefficient. Ps is the solid density, &0
is the liquid density of pure lead at its melting point, c=
is the bulk concentration, GL is the liquid-side temper-

: _ ature gradient at the planar interface, 11/ is the nominal
growth rate, k is the segregation coefficient, mc is the

--- slope of the liquidus, TM is the melting temperature of
Pb, e = Ps/Pt. - I is the fractional shrinkage, Gs =

-_ Z (LVI + G_kt )/k, is the solid-side temperature gradient
at the planar interface, ki and k.s are the thermal con-
ductivities of the liquid and solid, respectively, and L is

the latent heat of fusion per unit volume. (All concen-
trations used herein are weight percentages.) We note

,._ that the basic-state temperature distribution in the solid
(Eq. [4]) is valid (rely near the interface.

As in stability, analyses of other flows subject to uni-
form rotation, l:_ -',,._,.441thc linear disturbance equations

•,-, we use differ from those in the nonrotating case only by
addition of thc Coriolis acceleration to the disturbance

: : momentum equation. (This approach neglects the con-
: sequences of density variation in the term corresponding

to the centripetal acceleration.) The equations governing
small disturbances in the liquid are

: : V.u = 0 [5]

Ou p_, i_u Vp
-- - -- 1/i-- + 211 + u - argTti_
0 t Pt.o i) Z PLO

-- acgCL|: + pV2U

OTL _ __psI/1 - + Gt w exp ---z
Of PLO O "- PLOK L

[6]

= KtV2TL

[7]

= DLV2CLOct Ps I/1_z + Gcw exp ---z
0 t &o RLODt

[8]

where the dependent variables u, w, p, Tt, and cL are,
respectively, the disturbance values of the velocity, its
z-component, pressure, temperature, and concentration

in the liquid. Here, i_ is the unit vector in the z-direction,
g is the magnitude of the gravitational acceleration, _, is
the viscosity, ar and ac are the thermal and solutal ex-

pansion coefficients, respectively, G c = ( k - l ) psc_ Vz /
(kptoD t) is the concentration gradient at the planar inter-
face, 1) = I)oi: is the angular velocity, and lq o is a con-
stant. The disturbance energy equation in the solid is

aTs OTs Ks_72Ts [9]
at v, 0-7 =

where Ts is the disturbance temperature in the solid.
Taking the curl of Eq. [6] and the dot product of the

result with i,, we obtain an equation

aoJ, Ps ao_. Ow
VI---:-2_o--= u172w, [10]

at PLO OZ OZ

for the z-component of the vorticity, o_. After twice tak-
ing the curl of Eq. [6], the vertical component of the
resulting equation is

V_w _ ps v, L V2w + 2f_0 ao____
at PLO OZ OZ

= argV_TL + OtcgV_cL + vV4w [11]

The disturbance boundary conditions at the interface are

u(x,y,O,t) = eV, arl(x'y't) [12a]
Ox

O_(x,y,t)
v(x,y, O, t) = eV_ [12b]

Oy

O_7(x,y,t)
w(x, y, 0, t) = - e " [ 12c]

at

Ow(x, y, O, t)
= -eV_V_Tl(x,y,t) [12d]

az

Orl(x,y,t)
L

V_psc=

Ot

DLPLO

aTL(x,y,O,t) aTs(x,y,O,t)
= --kL + ks

dz az

(Ps_ GLV, kL GsV, kstTl(x,y,t )
+

t"LO KL KS /

[12el

c= O_7(x, y, t)
7q(x,y,t) + Vict(x,y,O,t) +

k at

proDL OCL(X,y,O,t)

ps(1 -- k) Oz
[12f]

TL(x,y,O,t) + GL_l(x,y,t) = Ts(x,y,O,t)"

+ GsTl(x, y, t)

I12g]

TL(x,y,O, t) + GtlT(x,y , t) = mLGcrl(x,y; t)

+ mLcL(x,y,O,t) + TM_V_(x,y,t) [12h]

where 77 is the interface position and _ is the capillary
coefficient.

L--
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llI. NONDIMENSIONALIZATION
AND FOURIER DECOMPOSITION

We scale the velocity, time, length, temperature, con-
centration, and vorticity with KL/H, H2/v, H, GtH, c_,
and KL/H 2, respectively, where H = Dt/V_ is the char-
acteristic length (associated with the destabilizing gra-
dient of rejected solute, see Eq. [3]), and write the
horizontal and temporal dependence of the nondimen-
sional disturbance quantities as exp (o-¢ + ia_X + iay Y),

where a_ and ay are the x- and y-components of the
wavevector and o" is the temporal eigenvalue. Substitu-
tion into Eqs. [7] through [11] yields

P D(D 2 - a_-)W = -Rara20t
°'(D2 - a2)W- S'-c

- RasLea2Ct + (D 2 - a2)2W- fl*Dflz [13]

o-flz - _ D_z = f_*DW + (D 2 - a2)flz [14]
Sc

Pro-OL - pLeDOL = (D 2 - a2)®L - W exp (-pLeZ)

[15]

SccrCc - pDCt = (D 2 - a2)Ct + yp Wexp (-pZ)
Le

[161

in the melt and

Pr_rOs - LeD®s = K(D 2 -- a2)®s [17]

in the solid. Here, Pr = V/KL is the Prandtl number,
Sc = v/DL is the Schmidt number, Le = DL/K_. is the
Lewis number, Rat = argGtH4/(KLv) and Ras =
acgc_H_/(Dtv) are the thermal and solutal Rayleigh
numbers, respectively, f_* = 2f_oH2/p is the square root
of the Taylor number, p = Ps/Pto is the density ratio,
K = Us/St is the thermal diffusivity ratio, and y =
(1 - k)/k. The boundary conditions (Eqs. [ 12a] through
[12hi) at the interface become

W(0) = -e Pr o'/3 [18a]

DW(O) = eLea2/3 [18b]

f2z(0) = 0 [18c]

Sco-/3 = -k'DOt(O) + k'DOs(O)

+ Le(k*p - k*/r - l/K)/3 [18d]

(1 - G)/3 = Os(0) - Or(0) ]18el

1
(Sco- + kp)fl = -kCt(O) - --DCL(O) [18f]

YP

m*
(-a:T* + m* - 1)/3 = --Ct(0) + OL(0) [18g]

P7

where W, CL, l'lz, and Ot are, respectively, the ampli-
tudes of the disturbances to the vertical velocity, con-
centration, vertical vorticity, and temperature in the melt,
Os is the amplitude of the disturbance temperature in the

solid, and/3 (a constant) is the amplitude of the disturbed
interface position. Here, we define dimensionless pa-
rameters k* = GtktH'/(LDL), k'_ = GtksH/(LDt),
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m* = mtGc/GL, T* = TM_/(GLH_-), and G = Gs/Gt.

For the far-field boundary conditions, we follow Coriell
et al. p] and set all disturbances to zero

Ul
W=DW=I_z=Ct=®t=O asZ----_ [19a]

Os = 0 asZ--, -_ [19b]

far from the interface.

IV. NUMERICAL SOLUTION

Our objective is to find conditions under which infin-
itesimally small disturbances neither grow nor decay for

a finite number of wavenumbers and decay for all other
wavenumbers. Disturbances which neither grow nor decay i
are said to be neutral. The neutral disturbances can be

of two types, depending on the imaginary part of o-. If
the imaginary part of (r is zero for a neutral disturbance,
the onset of instability will be via monotonically grow- U
ing disturbances (steady onset). If the imaginary part of
(r is not zero, the neutral disturbance will oscillate in

time (oscillatory onset),
In the previous section, we formulated an eigenvalue II

problem for two systems of ordinary differential equa-
tions on two semi-infinite intervals (in the melt and in

the solid), coupled by boundary conditions at the de- j
formable interface. For convenience, we follow Coriell

et al. [2]and solve the problem on a finite interval [-h, h],
where 2h is the dimensionless height of the computa-
tional domain. With regard to the far-field boundary I
conditions at Z = ---_, we set all disturbances to zero

W=DW=I_z=Ct= ®t=0 atZ=h [20a]

in the melt and

Os=0 atZ= -h [20b]

in the solid. In this work, we have used h = 10. (For j
steady onset, we have checked a number of our results
using more accurate asymptotic boundary conditions ap-

following Keller _ procedureplied at Z = +-h derived .... t4sl
and have found excellent agreement between the eigen- i
values computed using the two sets of boundary condi-
tions.) Since we use Chebyshev polynomials in our
numerical solution, we scale the liquid and solid regions
by z: = (2Z - h)/h and zl = (2Z + h)/h, respectively, i
so that each region lies between -1 "and + 1. The re-
sulting system is then solved using a spectral Galerkin
technique developed by Zebib. [_] The problem thus is
reduced to a matrix eigenvalue problem

Ax + o'Bx = 0 [21]

where o" is the temporal eigenvaiue and the elements of
the square matrices A and B depend on a 2 = a_2 + ay.2
(the square of the horizontal wavenumber), the bulk con-

centration c_, and the other dimensionless parameters.
In what follows, we characterize the stability of the

nominally plane-front solution in terms of the growth ve-
locity V_ and bulk concentration c_, with all other pa-
rameters taken as fixed. For each value of Vt, we seek

c_), suchone or more critical values of c_ (denoted by *
that for c_ < *c_, disturbances decay for all wave-
numbers, while for c_ > c*, disturbances grow for all
wavenumbers in some range. In order to determine the ,i
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--_ critical value(s) of c_, we first determine the neutral curve
(c_ vs the wavenumber a), separating those combina-

tions of c_ and a for which all temporal eigenvalues tr
lie in the left half-plane (a stable basic state) from those

_-" for which at least one eigenvalue lies in the right half-
plane (an unstable basic state). To determine the bulk

concentration on the neutral curve for an arbitrarily cho-
sen wavenumber a, we first guess a value of c_ and com-

pute all eigenvalues tr using Eq. [21 ]. If all eigenvalues
have negative real parts, the value of c_ is increased by
doubling the previous value; otherwise, the new value

of c_ is chosen as half the previous value. This process
is continued until we determine two values of c_ be-
tween which at least one sign change is obtained in the
real part of the least stable temporal eigenvalue. The

-- concentration on the neutral curve is then determined using
a bisection method.

To compute the critical concentration c_* at which in-
- : stability first occurs (i.e. the minimum on the neutral

curve), we arbitrarily choose a wavenumber and com-

pute the corresponding c_ on the neutral curve using the
-_ procedure described above. We then fix c_ at the value

_ computed at the previous step and compute the eigen-
values or for a discrete set of wavenumbers in a chosen
range. From this set, we select the wavenumber corre-
sponding to the o" with largest real part. If this wave-

--_ number is at an endpoint of the chosen range, we extend

the range to include the wavenumber corresponding to
the largest Re(o'). We then select this wavenumber and
determine the corresponding c_ on the neutral curve. We

"- continue this process until the relative change in c_ is
less than 10-6.

V. RESULTS

The solutions of Eqs. [13] through [19] depend on 15
nondimensional parameters, as defined in Sections II and
III. To determine the stability of a basic state with a

nominally planar interface, numerical values of these pa-
rameters need to be specified. (Solutions on a finite in-

terval depend also on h.) Therefore, it is not possible to
_-" numerically explore the effects of more than a few com-

binations of these parameters on the onset of instability.
In this work, we have thus restricted ourselves to the

__ Pb-Sn system which, due to the low melting points of
both components, has been the subject of several ex-

perimental studies. The parameter values (other than l'l*)
are as used by Coriell et al. t2J at reference conditions
corresponding to pure lead at its melting point. (The dif-
fusivity of Sn in Pb corresponds to an infinitely dilute
solution.)

To test our code, we first considered the nonrotating
case and compared our results to those of Coriell et al.
Taking the liquid-side temperature gradient at the inter-
face as GL = 200 K cm-_, we computed neutral curves

_., c_ vs a for various values of the solidification rate V_.
The neutral curves were generally similar to those shown
by Coriell et al. The only qualitative difference was that

in our work, several new oscillatory neutral curves were

found to branch from steady neutral curves found by
Coriell et al. and in the present work. We believe that

our detection of these additional oscillatory neutral curves
(which in each case lie well above the critical value of

c_ and are hence of no practical consequence) is due to
use of a numerical technique which simultaneously com-
putes a large number of temporal eigenvalues at each

combination of c_ and V_, as opposed to the shooting
technique of Coriell et al. which individually computes
the temporal eigenvalues by a one-point iteration scheme.

We present our principal results in terms of stability
boundaries in the V_ - c* plane. For ease of comparison
to the work of Coriell et al.,[2J results are presented in
terms of dimensional variables. With GL fixed at 200 K

cm -_, Figure 1 shows stability boundaries for fl0 = 0,
100, 200, 300, and 500 rpm. For each value of l'10, the
stability boundary consists of some portion of the mor-

phological branch (c* decreasing with increasing V_) found
by Coriell et al. (their Figure 1) joined to a convective
branch. The critical value of c_. on the convective branch

is an increasing function of fl0 at any value of V_, clearly
indicating the inhibitory effect of rotation on the onset

of buoyancy-driven convection. We note that for V_ =

5/.L s-', rotation at fl 0 = 500 rpm increases by slightly
more than two orders of magnitude relative to the non-
rotating case the critical Sn concentration above which
the plane-front solution becomes unstable. We further

note that the morphological branch is unaffected by ro-
tation, whereas as rio increases, the value of Vt at which
the onset of instability shifts from the convective branch
to the morphological branch decreases from about

40 /_ s -_ in the nonrotating case to about 27 /.t s -_ for
1"_0= 500 rpm.

For each value of Clo, we see a local minimum near

V_ = 1 # s -_, with the minimum shifting to smaller growth
velocities and becoming relatively more shallow as f_0
increases. We note that the maximum relative stabili-

zation by rotation occurs near the local minimum, and
that for 1_0 = 500 rpm, the critical bulk concentration

of Sn is increased more than a hundredfold. Although
Coriell et al. t21 noted a local minimum in the stability
boundary near V_ = 1 /z s -_ in the nonrotating case for
the largest gravitational acceleration considered, they of-
fered no explanation for its existence. This minimum is

1 0°

10"1
30

10-2

10 -3

0 rpm

,10 "4 _ , _ ,,,,,I ' ' ! '''''! L I , ,,,_

0.1 1 1 0 1O0

Vl O_s"_)

Fig. 1--Vi-c* stability boundaries for GL = 200 K cm-_, with fl0 =
0, 100, 200, 300, and 500 rprn.
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a consequence of the fact that as I//_ 0, the concen-
tration gradient Gc = ( k - 1) psc= VI/( kpLoDL) vanishes.
As the temperature gradient is independent of c= and is
stabilizing, the critical value of c_ must ultimately in-
crease as I//_ 0. (Of course, the weight percent of the
solute, c=, cannot exceed 100.) As c* must initially de-

crease with increasing I/I, there must be a local minimum
on the convective branch before c* can increase to join

up with the morphological branch of the stability bound-
ary. This nonmonotonic dependence of c* on VI can be
interpreted in terms of the existence of four critical val-
ues of I/1 for certain values of c_. (In addition to the three
critical values shown in Figures 1 and 2, we note that
for sufficiently large V_, c* ultimately increases on the
morphological branch. I61)

As discussed by Coriell et al. I2_for the nonrotating case,
at each value of Do, the onset of morphological insta-
bility occurs via a short wavelength (large wavenumber)
instability while convective instability sets in via distur-
bances with relatively longer wavelengths. In the fol-
lowing section, this point is discussed in the context of
the mechanism by which rotation inhibits the onset of
convection.

For GL = 400 K cm -_, Figure 2 shows stability bound-
aries (c* vs I/i) analogous to those for GL = 200 K cm -1 .
Aside from a slight shift of the stability boundaries to
higher values of c*, the results are qualitatively similar
to those for GL = 200 K cm -I. In particular, the onset

of convection is suppressed but the morphological insta-
bility is not influenced by rotation, and the critical value
of c_ passes through a minimum near V_ = 1 p. s -_.

VI. DISCUSSION

The remarkable stabilization obtainable at low growth
rates (more than a hundredfold increase in the critical
value of c_ at Vt = 1 # s-_ can be achieved by rotating

the layer at 500 rpm for the two values of GL considered)
is undoubtedly due to the well-known Taylor-Proudman
mechanism described by Chandrasekhar. (27j According
to the Taylor-Proudman theorem, steady motion parallel

1 0 °

10 "1

_" 0" 2v 1
d

10"

. 200 rpm

orpm

10" | | I I I till _1 i. , , ,,,,I , , i , ,t

0,1 1 10 100

V_ (l_s" ')

Fig. 2--Vt-c* stability boundaries for a L : 400 K cm -_, with 1"10 =

0, 100, 200, 300, and 500 rpm.
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to the axis of rotation in a uniformly rotating inviscid
fluid is prohibited at any nonzero rotation rate. If this
theorem were strictly applicable to a viscous fluid, the Z
onset of steady convection would be prohibited, since i
the flow in convection cells must have a vertical com-

ponent. Instead, in a viscous fluid, one sees an inhibition
of the onset of steady convection, with the degree of
inhibition (expressed here as an increase in c_) increas- m

ing with fl0. That the onset of oscillatory convection is
hardly affected is due to the fact that the Taylor-Proudman

theorem applies only to steady flows. It is also not sur- i
prising that the morphological instability is unaffected
by rotation. The morphological instability occurs at very
short wavelengths, so the motion is almost perpendicular
to the solidification front (i.e., aligned with the axis of i
rotation). Hence, the Coriolis acceleration does not sen-
sibly affect the morphological instability.

For a horizontally unbounded binary fluid layer in which
the density depends on temperature and one composition ==
variable, Pearlstein's linear stability analysis ml shows

that Coriolis effects generally inhibit the onset of con-
vection (by the Taylor-Proudman mechanism). Under M
some conditions, however, rotation can destabilize the
layer, depending on the values of Pr, Sc, the dimension-
less rotation rate (characterized by a Taylor number), and
the dimensionless temperature or solute gradients (char- m
acterized by thermal and solutal Rayleigh numbers). For
conditions under which destabilization (on a linear basis)
occurs relative to the nonrotating case, instability sets in

via an oscillatory mode, in which the natural frequency
of oscillation of a buoyant fluid element is tuned (by
rotation) in such a way that there is a local minimum in
the critical value of Rat as a function of the dimension- --
less rotation rate. This behavior was found ml for Pr and

Sc both less than unity, although there is no apparent
reason why such destabilization cannot occur under other
conditions when onset is via an oscillatory mode.

Although Pearlstein t331 found in the rotating doubly
diffusive case that for Pr < 1 < Sc (a condition satisfied

in the present case, in which Pr = 0.023 and Sc = 81)
there can exist as many as three critical values of the w
solute Rayleigh number for certain values of the Taylor,
Prandtl, Schmidt, and thermal Rayleigh numbers, we have
found no evidence of such multivalued stability bound-
aries in the present calculations. As in the case investi- i
gated earlier, I331it is possible that such behavior occurs
in relatively small regions of the parameter space (GL,
Vj, etc.) and has gone undetected so far. As discussed
in Section V, however, Figures 1 and 2 imply that for
certain values of c_, there exist four critical values of Vt

(including the unshown portion of the morphological
branch), m

Even though the foregoing analysis is restricted to a
horizontally unbounded fluid layer, the work of Homsy
and Hudson I291and Btihler and Oertel I471suggests that its
predictions will be qualitatively correct for finite aspect
ratios (ratio of mold radius to height) if the parameter
ft20Ro/g (a Froude number, where Ro is the mold radius)

is sufficiently small. For the onset of thermal convection
in rotating water or mercury layers heated from below,
the excellent quantitative agreement between classical
linear stability analysis for a horizontally unbounded Z
layer [24,2L44_and experimental work for finite aspect
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ratios t44"48"49]provides a clear demonstration of the a,.
potential of the Coriolis acceleration to suppress cL
buoyancy-driven convection in a rotating fluid. (L

Interpretation of the results of a stability analysis re- Ct
stricted to infinitesimal disturbances iS obviously subject c_
to the caveat that larger disturbances might grow, even c*

though sufficiently small disturbances are predicted to Dt
decay. Indeed, it is known that for rotating fluid layers g
heated from below, the onset of thermal convection G

sometimes does occur t5°.51,52]at lower Rayleigh numbers Gc
than predicted by linear theory. However, in that case,
accounting for finite (i.e., noninfinitesimal) amplitude GL
disturbances modifies the quantitative predictions of the

theory; the basic qualitative prediction of stabilization by Gs
rotation remains unchanged.

--- The relatively modest rotation rates required to sig- h
nificantly inhibit the onset of convection in the Pb-Sn

system make the proposed method an interesting can- H
didate for a program of laboratory experiments. (We note i_
here that the experimental work of MiJller [17]and Weber k

et al. [_ focuses on the effect of rotation on the time- kt
• ° dependence of the supercritical flow, with no informa- k*
w tion given on the effect of rotation on the suppression of ks

motion. Furthermore, although these authors have con- k*
cluded that the Coriolis acceleration is key to the elim- L

_ ination of striations at high rotation rates, their Le-
;,..2 experimental design complicates the separation of ef- m*

fects of the Coriolis acceleration from the increased mt

"pseudo-gravitational" effects associated with the cen- p
tripetal acceleration.) Experiments might be conducted Pr

u using a completely filled cylindrical mold, thermally in- r
sulated on the vertical surface and mounted axi- R0
symmetrically on a rotating horizontal turntable. If the Rat

w liquid at the top of the rotating mold is in contact with Ras
a gas or vacuum, it will have a nearly paraboloidal free Sc
surface, on which the elevation above the point on the t

axis of rotation is Az = flor2/(2g). Although this con- Tt
_._ figuration is consistent with rigid-body rotation, it also Tt

leads to a nearly paraboloidal solid-melt interface. For TM

-- high rotation rates or large mold radius, this will in turn T*
- _ lead to significant radial variations in the solidified alloy. Ts
w Also, cooling at the radial boundary leads to a radial /_s

temperature gradient, which in turn leads to significant u
centrifugal effects. For these reasons, the results of the U

present analysis cannot be compared to the experimental 1/I
work of Kou, I2_]Kou et al. ,[22jor Sample and Hellawell,[231 w
in which strong radial variations in macrosegregation are W
observed in the solid. Experiments of the type proposed
above were initiated some time ago by Copley m_ for the x, y, z
crystallization of ammonium chloride from aqueous X, Y, Z
solution, z_

Finally, we note that for many binary systems, plane- z2
front solidification does not occur at practical growth ve- ac
Iocities, and that the morphological instability results in ar
dendritic solidification. In this case, rotation might also /3
suppress buoyancy-driven convection in the melt and y

--" interdendritic liquid; this possibility is currently being e
investigated by us for the Pb-Sn system.

"" LIST OF SYMBOLS ®t
Os

a magnitude of wavevector r

ax x-component of wavevector KL
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y-component of wavevector
disturbance concentration

basic state concentration distribution
amplitude of disturbance concentration
bulk concentration
critical bulk concentration
diffusion coefficient

magnitude of gravitational acceleration
Gs/GL

( k - l)psc_ V_/( kptoDL) (nominal
concentration gradient at interface)
nominal liquid-side temperature gradient at
interface

(LVI + GLkL)/ks (nominal solid-side

temperature gradient at interface)
dimensionless height of computational
domain in liquid and solid
DL/V,
unit vector in z-direction

segregation coefficient
thermal conductivity of liquid
GtkLH/(LDL)

thermal conductivity of solid
GtksH/(LDt)
latent heat of fusion per unit volume
DL/KL (Lewis number)
mtGc/GL
slope of liquidus
disturbance pressure
_,/Kt (Prandtl number)
position vector
mold radius

argGtH4/(KLv) (thermal Rayleigh number)
acgc_H3/(DLl ,) (solutal Rayleigh number)
_/DL (Schmidt number)
time

disturbance temperature in melt
basic state temperature distribution in melt

melting temperature of Pb
TM_ff/(GtH" )

disturbance temperature in solid
basic state temperature distribution in solid
disturbance velocity
basic state velocity
nominal growth rate

z-component of disturbance velocity
amplitude of z-component of disturbance
velocity
cartesian coordinates

dimensionless cartesian coordinates

(2Z + h)/h (vertical coordinate in solid)
(2Z - h)/h (vertical coordinate in liquid)
solutal expansion coefficient
thermal expansion coefficient

amplitude of disturbed interface position
(l - k)/k

Ps/Pto - I (fractional shrinkage)

interface deflection relative to nominally
planar condition

amplitude of disturbance temperature in melt

amplitude of disturbance temperature in solid
KS/KL

thermal diffusivity of liquid
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rs thermal diffusivity of solid
v kinematic viscosity
P Ps/PLo
PL local density of liquid
PL0 density of liquid at reference temperature and

composition
Ps density of solid
o" temporal eigenvalue
r dimensionless time

qs capillary coefficient
lI angular velocity
no magnitude of f_
f_* 2_oH2/v (square root of the Taylor number

Ta = 4_0H4/_ 2)

f_z amplitude of z-component of disturbance
vorticity

w. z-component of disturbance vorticity
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Abstract

A linear stability analysis is used to assess the potential of steady uniform rotation about the

vertical axis to suppress the onset of convection during directional solidification of mercury

cadmium telluride cooled from below. Since for sufficiently small x the density of H__xCdxTe

does not depend monotonically on temperature, there is a range of operating conditions (bulk

CdTe mole fraction, nominal solidification rate, and liquid-side temperature gradient) for

which, adjacent to the liquid-solid interface there is a sublayer in which the thermal

stratification is destabilizing. This differs from the normal case (i.e., binary alloys

characterized by a linear equation of state, such as Pb-Sn), in which the thermal stratification

is stabilizing everywhere. Thus, in H__xCdxTe melts there can exist a critical bulk CdTe mole

fraction x below which plane-front solidification is unstable at all solidification rates VI,

whereas in the normal case plane-front solidification at any x is linearly stable for

sufficiently small Vl Moreover, for H__xCdxTe there can exist a critical solidification rate

Vlcr such that for VI< V_ r plane-front solidification is unstable for all x. Our results show

that modest rates of uniform rotation can significantly suppress the onset of buoyancy-driven

convection for the H__xCdxTe system, and that rotation can substantially increase the critical

solidification rate VIcr beyond which plane-front solidification is unstable for all bulk CdTe

mole fractions.
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1. Introduction

The crystal growth of mercury cadmium telluride (Hgl_xCdxTe) is of considerable interest

due to its extensive use in the fabrication of infrared detectors and other electro-optical

devices. This has led to a number of experimental [1,2] and theoretical [3-5] studies of the

solidification of H__xCdxTe from the melt. For a more extensive discussion, the reader is

referred to the reviews by Micklethwaite [6] and Capper [7]. In those applications in which

crystal size and defect density are critical, with the goal being to produce large, nearly perfect

single crystals, it is frequently desired toachieve "plane-front" solidification in order to

reduce segregation. If this could be accomplished, the process would be steady in a reference

frame moving with. the interface, and the only spatial variation would be in a direction normal

to the interface. However, in real systems, several instabilities can cause departures from the

nominally steady one-dimensional plane-front case.

First, the liquid-solid interface may be subject to a so-called morphological instability,

studied extensively since the early work of Mullins and Sekerka [8]. This instability deforms

the nominally planar interface, ultimately leading to formation of a two-phase "mushy zone" of

dendrites and interdendritic liquid. Departures from one-dimensionality and steadiness in the

mushy zone can result in solute segregation in the solidified material. Second, depending on how

the liquid density varies with temperature and composition, and according to whether the

segregation coefficient is greater or less than unity (i.e., whether solute is rejected or

preferentially incorporated at the interface), the melt may be subject to a buoyancy-driven

convective instability. The resulting flow can contribute significantly to the redistribution of

solute, and hence to segregation [9-1 2].

Convective and morphological instabilities in a binary liquid undergoing directional

solidification were first studied by Coriell et al. [13] for Pb-Sn alloys. These authors showed

that motion may occur due to either morphological or convective instabilities, and that the

buoyancy force does not sensibly alter the criterion for onset of the former, which occurs at

higher wavenumbers than the latter. Subsequent work has been reviewed by Glicksman et al.

[14], and Sekerka and Coriell [15]. More general discussions of the effects of convection on

plane-front and dendritic solidification have been given recently by M_iller [12], Worster

[16], Davis [17], Huppert [18], and Polezhaev [19].

One means by which the onset of buoyancy-driven convection in a density-stratified fluid

layer can be inhibited is to subject the layer to a magnetic field aligned perpendicular or
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parallel to the stratification [12]. For horizontal Pb-Sn layers solidified from below at

several growth velocities, Coriell et al. [13] showed theoretically that the critical bulk Sn

concentration above which instability occurs can be increased an order of magnitude by a

vertical magnetic field of the order of one tesla. This technique requires the liquid to be an

electrical conductor, and is applicable to metallic alloys, semiconductors, and aqueous solutions.

Segregation might also be controlled by increasing or decreasing the magnitude of the

gravitational acceleration or changing its direction. The theoretical studies of Coriell et al.

[13], Alexander et al. [20], and Heinrich et al. [21,22] suggested that macrosegregation during

directional solidification of binary alloys can be reduced by operating in a low-gravity

environment. M011er [23] and Weber et al. [24] have recently discussed solidification under

conditions where the magnitude of the body force is greater or less than that of normal gravity.

Both gravity and an external magnetic field are body forces which act on the fluid. As

opposed to contact forces such as pressure, viscous stress, and surface tension, which act on the

surfaces of a fluid element, body forces act on the mass of a fluid element. Hence, their local

strengths are proportional to the local fluid density. In addition to gravitational and magnetic

body forces, there are other "pseudo-body forces" which manifest themselves as fictitious

accelerations (centrifugal and Coriolis) when the reference frame to which the fluid motion is

referred undergoes steady rotation relative to an inertial frame. (An additional fictitious

acceleration associated with unsteady rotation relative to the inertial frame will not concern us

here.) Although these accelerations do not correspond directly to forces (unlike the

gravitational acceleration), they have the same mathematical form as accelerations associated

with body forces, and can have dynamical consequences equally as profound as the gravitational

and magnetic forces discussed above [25]. In light of this, and the fact that imposition of an

external magnetic field or modification of the gravitational field is not always feasible, the

possibility of using rotation to suppress the onset of convection in a liquid undergoing

directional solidification is of interest.

The idea of using rotation to affect fluid motion and solute distribution in the melt, and

ultimately segregation in the solid, is not a new one. Beginning with the seminal work of

Czochralski [26] on the use of differential rotation of a growing crystal relative to the crucible,

there have been many attempts to use rotation to reduce compositional variations in crystal

growth. Among these are the accelerated crucible rotation technique (ACRT) developed by

Scheel and Schulz-DuBois [27] and Schulz-DuBois [28], in which axisymmetric azimuthal or
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more complicated shear flows are generated by unsteady rotation of the crucible relative to the

fluid. At about the same time, Copley [29] conducted preliminary experiments in which the

solidification of aqueous ammonium chloride was conducted on a rotating turntable. Later, Kou

[30], Kou et al. [31 ], and Poirier et al. [10] experimentally investigated the effects of rotation

on macrosegregation in the solidification of Pb-Sn and AI-Cu alloys under conditions such that

centrifugal effects were thought to be dominant. Sample and HellaweU [32,33] experimentally

investigated the effects of mold precession on the solidification of Pb-Sn alloys and aqueous

ammonium chloride solutions. More recently, M_iller [23], Weber et al. [24], Rodot et al.

[34], and Chen and Chen [35] have considered crystal growth in or on a centrifuge.

Rotation can manifest its effects in a number of ways. The rotation of one or more solid

boundaries can generate a shear flow (as in the ACRT technique) which directly affects the

redistribution of solute through the advection term (u • Vx, where u is the velocity vector and

x is the mole fraction) in the solute transport equation. Alternatively, if all solid boundaries

rotate at the same steady angular velocity, then the fluid may be in solid-body rotation. In a

rotating frame, the fluid is then motionless (u = 0) and there is no advective contribution to

solute transport. However, the resulting fictitious accelerations can have important

consequences for the stability of the solid-body rotation [25,36], either enhancing or

suppressing the secondary flows responsible for solute redistribution.

As discussed above, steady rotation at constant angular velocity D about a fixed axis can

influence the motion of a fluid by means of two "pseudo-body" forces. These correspond to the

centripetal and Coriolis accelerations, for which the terms pLD x (_ x r a n d 2PLD x u,

respectively, are added to the momentum equation. Here, r is the position vector measured

from the axis of rotation, u is the local fluid velocity relative to the rotating frame, and PL is

the local density of the liquid. If the density variation is neglected, the centrifugal acceleration

has no dynamical consequences. If the density variation cannot be neglected, then for a given

geometry, the ratio of the magnitudes of these accelerations is 2u±/(Doro) , where Do, ro, and

u± are the rotation rate, characteristic length (e.g., mold radius), and component of fluid

velocity relative to the moving frame and perpendicular to the axis of rotation, respectively.

Thus, if u± is independent of or increases sublinearly with Do, the importance of the Coriolis

acceleration relative to the centrifugal acceleration will increase with decreasing D o.

Oztekin and Pearlstein [37] have recently considered the effect of Coriolis acceleration on

the stability of plane-front solidification of dilute Pb-Sn binary alloys, for which a linear

r .
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dependence of density on temperature and mass fraction is an excellent approximation to the

equation of state. Their theoretical work shows that relatively modest rotation rates can

significantly suppress the onset of buoyancy-driven convection in horizontally unbounded

layers of that alloy undergoing directional solidification.

The question naturally arises as to what effects rotation has on the onset of convection in the

H__xCdxTe system, in which the nonmonotonic dependence of liquid density on temperature

[38] can give rise to, adjacent to the solid/liquid interface, a sublayer in which the thermal

stratification is destabilizing. It is the purpose of the present work to investigate this question.

We follow the approach of 0ztekin and Pearlstein [37] and use a linear stability analysis to

study the effects of the Coriolis acceleration on the onset of instability during solidification of

Hg]_xCdxTe. The paper is organized as follows. In 52, we present the governing equations. The

one-dimensional basic state and linear disturbance equations are given in §3. The latter are

nondimensionalized and Fourier-decomposed in §4. The numerical solution technique is

described in §5. Results for Hgl_xCdxTe are presented in §6, followed by a discussion in §7.

w

. °

w

L--

w

2. Governing Equations and Formulation

We adopt the solidification model used by Coriell et al. [13] and Oztekin and Pearlstein

[37], in which the fluid properties, except density, are taken to be constant throughout the

liquid. The variation of density with temperature and CdTe mole fraction will be accounted for

in the buoyancy term and neglected everywhere else. The equations governing the fluid motion

are the Oberbeck-Boussinesq equations in a reference frame translating with the nominally

steady velocity ( izVl) of the moving interface and rotating at a constant angular velocity _ about

the vertical axis

V.u=O, (la)

_)U
m+u. Vu+ 2Dxu+ Dx£2xr =---
at 1 _Tp_PL(XL,TL)iz+VVZU, (lb)

PLo PLo

aTL
+ u. VTL = !cLvzT L , (lc)

OqXL..
at _u • Vx L = D L V 2 XL, (1 d)

where the dependent variables u, p, XL, and TL are respectively, velocity, pressure, CdTe mole
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fraction, and temperature in the liquid, iz is the unit vector in the Z-direction, VI is the

nominal solidification rate (with dimensions of velocity), _L is the thermal diffusivity of the

liquid, DE is the diffusivity of Ccn'e in the liquid, v is the kinematic viscosity, PLo is the liquid

density at a particular reference temperature and CdTe mole fraction, D = Doi z is the constant

angular velocity, and g is the magnitude of the earth's gravitational acceleration. We note that

the fluid velocity u and interface velocity Vs (vide infra) are referred to the moving frame,

unlike the velocities employed in reference 13. Finally, we note that (ld) assumes that mass

transport in the system can be accounted for using a binary model, in which CdTe diffuses

through HgTe, and that the trace quantities of atomic Hg, Cd, and Te present in the liquid are

negligible.

We have used an equation of state based on the experimental data of Chandra and Holland

[38] and Mokrovskii and Regel [39]. The variation of liquid density with temperature and CdTe

mole fraction is represented by bivariate polynomials

3 4-i

PL(X,T)--_ _, bijxi(T-I030 K)j for T < Tmax(X ) (2a)

i=O j=O

and

where

3 1

PL(X,T)= __, _, dijxi(T-i030K) j for T>Tm=x(X) (2b)

i=O j=O

3

Tmax (x) = _ r ix i (3)
i=O

is a polynomial fit to the largest temperature for which liquid density data are available in the

literature. The linear dependence of density on temperature (2b) for T > Tmax(X ) is chosen to

match PL and apE/aT at Tma x. Details are given in Oztekin and Pearlstein [40].

The energy equation in the solid is

aTs aTs  sV2Ts (4)
o_t -Vl o_Z =

where Ts is the temperature in the solid, and _s is the thermal diffusivity of the solid.

The boundary conditions at the liquid-solid interface are

6



m

[]

I
I

m

I

J

IE

i

gB

l

U

IB

m

Ull

m

I

lib



!
i

-(_.Vs + p* izVl) .n = u.n, (5a)

(u+ izV I) ot = 0 (5b)

where n and t are unit vectors normal and tangential to the interface, respectively, Vs is the

local interface velocity, p* = ps/PLo is the density ratio, Ps is the (constant) solid density, and

= p*- 1 is the fractional shrinkage. The energy balance at the liquid-solid interface is

L(Vs+ izV z)'n=(-kLvTL+ksvTs)'n , (5c)

where the right-hand side represents the difference between the normal Components of the heat

flux vectors in the liquid and solid, and the left-hand side represents the product of the latent

heat L(x=) and the normal component of the solidification velocity. Here kL(X) and ks(x) are

the thermal conductivities of the liquid and solid, respectively. The solute balance at the

interface is

Ps(XL-Xs)(Vs + izY ] ) • n = -PLoDLVXL,n, (Sd)

=

F_

.r

where x s is the CdTe mole fraction in the solid, and solid-state diffusion has been neglected. We

also require the temperature to be continuous

TL=Ts, (5e)

across the interface,the liquidand solidconcentrationsof CdTe at the interfaceto be related

accordingto the binaryphase diagram

Xs= kXL, (5f)

where k is the segregation coefficient, and the temperature and CdTe mole fraction at the

interface to be related by

TL=TM + mLXL-TM _( 1 _2)El+ , (5g)

where TM is the melting temperature of HgTe, m L is the slope of the liquidus, R1 and Rz are the

principal radii of curvature of the interface, and _Ij is the capillary coefficient. The

temperature- and composition-dependence of most of the thermophysical properties (other

than p) is given in Appendix A. For the remaining properties, values measured at selected

temperatures and compositions are taken as constant over the entire range.

,.,.- 7
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3. Basic State and Linear Disturbance Equations

In the reference frame described in §2, the steady one-dimensional basic state specified by

(6a)
Ms=O,

with

= -p*V I iz,
(6b)

mLX- -_I1-exp(-p*V_ Z/_L)], (6C)
TL= TM+_+ p*Vl t -

_L=X [I+I-kexp(-p*VIZ/DL)],k

(6d)

in the liquid, and

m, x= --%_[1-exp(-V! Z/Ks) ], (6e)
Ts=

in the solid is, aside from the velocities, which we refer to a translating and rotating frame, the

same as that used by Coriell et al. [13]. Here, V--s, u, TL, XL' and _s are, respectively, the

basic state interface velocity, velocity, temperature and CdTe distributions in the liquid, and

temperature distribution in the solid, and GL and Gs are the liquid-side and solid-side

temperature gradients, respectively. Our basic state differs from that of Coriell et al. in that

Vs = 0 and _ is not proportional to the shrinkage _., because in our formulation the interface

and fluid velocities are referred to the same (moving) inertial reference frame.

As in stability analyses of other flows subject to uniform rotation [41-45], the linear

disturbance equations weuse differ from those in the nonrotating case only by addition of the

Coriolis acceleration to the disturbance momentum equation. (This approximation, discussed by

Homsy and Hudson [48], neglects the consequences of density variation in the term

corresponding to the centrifugal acceleration.) The equations governing small disturbances in

the liquid are

_F,u'= 0,
(7a)

au' 1 ,
au___'_ p, vi _ + 2_ x u': __vp" - fTTL iz + fxXL iz +vVZu"

az PLo

(7b)

aT'L +GLw'exp(-p*V IZ/KL) = KLVZT'L ' TL_
at

(7c)
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ax_._.'L_ p*V IBX'L+G w'exp(-p*Vl Z/DL) =DLVZX'L ' (7d)
at az x

XL, and p' are, respectively, the disturbances to the liquid velocity, its• w' T' Lwhere u, , ,

Z-component, temperature, CdTe mole fraction, and pressure. Here, we define

fT=_ I fx=_ _ (8)

aT _,.,TL . ax _XL,TL

and Gx = (k-1)p*VIx./(kDL) is the CdTe gradient at the nominally planar interface. The

disturbance energy equation in the solid is

_ Vl at__L = KsVZTs ' (9)
at az

where Ts is the temperature disturbance in the solid.

Taking the curl of (7b) and the dot product of the result with i z , we obtain an equation

I

at -P 1--_--
P

for the Z-component of the vorticity, coz • After twice taking the curl of (7b), the vertical

component of the resulting equation is

a--vZw'-P *v, a__vZw' _ amz =fTgV2TL + fxg_TZXL+vV4W'. (11)
at az + 21;_°-_-

The disturbance boundary conditions linearized about the nominal interface position (Z = 0) are

• _V. aTl(X,Y,t) (1 2a)
u(X,Y,0,t)= I- ax '

v'(X,Y,0,t)= _VI a_(x,Y,t)
- aY '

(1 2b)

a_(x,Y,t) (i2c)
w'(X,Y,0,t) = -c- at '

L

aw'(X,Y,0,t) = -_v_V_q(X,Y,t), (I2d)
az

aTC(X,Y,O,t)+ksaT;(X,YD,t)+ (_P*GLkL__VIII(X,Y,t), (12e)
a11(X'Y't)--kL- aZ Ik KL KS )

at az

r

9



i

'Kin

i



P*V._____.1211(X,Y,t)+VlX'L(X,Y,O,t)+

X=

x® an(x,Y,t)=-. DL ax_(X,Y,O,t) (12f)

k at p* (I- k) az

TL (X,Y,O,t)+ GL_I(X,Y,t)=Ts (X,Y,O,t)+GsTI(X,Y,t),
(12g)

L

i==-

T L (X,Y,O,t) +GL_I(X,Y,t) =mLGx_ (x'Y't) +mLXL(X'Y'O't) + TM _V_(X,Y,t), (I 2h)

where II is the interface deflection, Vs(X,Y,t) = iz a_at is the linearization of the disturbance

interface velocity, and X and Y are horizontal coordinates.

4. Nondimensionalization and Fourier Decomposition
We scale the velocity, time, length, temperature, CdTe mole fraction, and v0rticity with

KL/H , HZ/v, H, GLH, x=, and _L/H 2, respectively, where H= DL/V I is the characteristic

length [associated with the stabilizing gradient of preferentially incorporated CdTe, see (6d)],

and write the horizontal and temporal dependence of the dimensionless disturbance quantities as

exp(O_ + iaxX* +iayY*), where ax and ay are the X- and Y-components of the wavevector, X*

and Y* are the dimensionless horizontal coordinates, and o is the temporal eigenvalue.

Substitution into (7) and (9-I 2) yields

a(D 2- a2)W - P_- D(D z- a2 ) W = - FTa2e L- Fxa27,L+ (D2- az )z W - DoDQ,
bC

(1 3a)

o-Q - DQ = D ODW + (D z- az )Q,
(I3b)

(_Pr e L-p* Le D_)L = ( Dz - az )OL- W exp(- p* LeZ* ),
(13c)

(ISc _L-p* D_L= ( D2- az)7_L+ If P* W exp(-p* Z*) ( 13d)Le

in the liquid, and

a Pr Os-LeDes= K(Dz- az)gs (14)

in the solid. Here, Pr = V/WE is the Prandtl number, Sc= v/D L is the Schmidt nUmber,

Le:DL/K L is the Lewis number, FT=fTgGLH4/(KL v), Fx=fx gx=H3/(KLv)' Q: =2D°HZ/v is

the square root of the Taylor number, K = KS/K L is the thermal diffusivity ratio, Z* is the

dimensionless vertical coordinate, and _'= (1-k)/k. The boundary conditions (12a-h) at the

10
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interface become

W(0) = -_a_Pr, (15a)

DW(O) = eaZj3Le, (1 Sb)

(15c)q(0) = 0,

•/r "/r "/t _t-

• DOL(O) + ksDes(O) + Le(kt. P -kt.oScl3 = -k L /_ - I/_)J3, (1 5d)

(1 - G)IB = es(O)-eL(O ), (1 5e)

(aSc + kp*)iB= -kZ L(0)- y---_.DZL(0), sf)

(-a2T = XL(O) +eL(O), (lSg)

where W, _'L' QJ and e L are, respectively, the amplitudes of the disturbances to the vertical

velocity, concentration, vertical vorticity, and temperature in the liquid, e s is the amplitude

of the disturbance temperature in the solid, and 13 (a constant) is the amplitude of the disturbed
_k

interface position. Here we define dimensionless parameters kL=GLkLH/(LDL) '
qr _t

k s = GLksH/(LD L), m = m LGx/GL, T_ = TM_u/(GLHZ), and G = Gs/G L. For the far-field

boundary conditions, we follow Coriell et al. [1 3] and set all disturbances to zero

W = DW = Q = XL= e L = 0

far from the interface.

as Z*-_ 0o , (1 6a-e)

es= 0 as Z*-, -==, (16f)

5. Numerical Solution

Our objective is to find conditions under which infinitesimally small disturbances neither

grow nor decay for a finite number of wavenumbers, and decay for all other wavenumbers.

Disturbances which neither grow nor decay are said to be neutral. The neutral disturbances can

be of two types, depending on the imaginary part of o. If the imaginary part of o is zero for a

1]





neutral disturbance, the onset of instability will be via monotonically growing disturbances

(steady onset). If the imaginary part of o is not zero, the neutral disturbance will oscillate in

time (oscillatory onset).

In the previous section, we formulated an eigenvalue problem for two systems of ordinary

differential equations on two semi-infinite intervals (in the liquid and solid), coupled by

boundary conditions at the deformable interface. For convenience, we follow Coriell et al. [13]

and solve the problem on a finite interval [-h,h], where 2h is the dimensionless height of the

computational domain. With regard to the far-field boundary conditions at Z*= +_, we set all
disturbances to zero

in the liquid and

W = DW = Q = XL= eL= 0 at Z*= h (17a-e)

Os= 0 at Z*= -h
(170

in the solid. In this work, we have taken h to be at least 10, depending on the vertical structure

of the basic state temperature and solute fields (6c, d). (For steady onset, we have checked a

number of our results using more accurate asymptotic boundary conditions applied at Z*= +h

derived following Keller's [46] procedure, and have found excellent agreement between the

eigenvalues computed using the two sets of boundary conditions.) Since we use Chebyshev

polynomials in our numerical solution, we scale the liquid and solid regions by Zz= (2Z*-h)/h

and z1= (2Z*+h) / h, respectively, so that each region lies between -1 and +1. The resulting

system is then solved using a spectral Galerkin technique developed by Zebib [47]. The problem

is thus reduced to a matrix eigenvalue problem

As+oBs=0, (18)

where o is the temporal eigenvalue, and the elements of the square matrices A and B depend on

the square of the horizontal wavenumber aZ= z + z the bulk CdTe mole fraction x , and theax ay, =
other dimensionless parameters.

In §6, we characterize the stability of the nominally plane-front solution in terms of the

bulk CdTe mole fraction x= and solidification rate VI, with all other parameters taken as fixed.

As shown schematically in figure 1, there is a critical value of VI (denoted by V1cr) such that

for V l > VIcr, some disturbances (i.e., for some wavenumbers) grow for all values of x, while

for VI< VIor, disturbances of every wavenumber decay for some range of bulk CdTe mole

]2
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fractions. The upper and lower limits of that range are denoted by x*= and x*=*, respectively. To

determine the critical values of x® ( x* and x*=*) we first find the morphological and convective

neutral curves (x versus a) separating those combinations of x® and a for which all temporal

eigenvalues a lie in the left half-plane (LHP) from those for which at least one eigenvalue lies

in the right half-plane (RHP), corresponding to stable and unstable basic states, respectively.

In order to determine the bulk CdTe mole fraction on the morphological and convective

neutral curves for an arbitrarily chosen wavenumber a, we first compute all eigenvalues _ of

(1 8) at each of N values of x (x_), 1 < n < N) in the range [x rain,0.2], where the lower bound
eo

is typically 10 -4 and the upper bound is determined by the largest CdTe mole fraction for which

we have data for the equation of state. We then attempt to determine a range of x,, for which all

temporal eigenvalues are in the LHP. If one of the original N values of x= selected is stable

(i.e., all temporal eigenvalues lie in the LHP), we then determine two intervals such that as x

increases, within one a transition from instability to stability occurs, and within the other a

transition from stability to instability occurs. Through these two intervals pass the convective

and morphological neutral curves, respectively. If none of the original N values of x, is stable,

we choose the value (say, x(=j)) for which the most unstable temporal eigenvalue has the

smallest real part, and subdivide the interval rx(J-1)x(J+l)]until we either find a stable value ofL m ' o_, .i

x (at which juncture we proceed to isolate the two intervals described above), or abandon the

search when the real part of the least stable temporal eigenvalue and the difference between

consecutive values of x® supports the expectation that all intermediate values of x® are

unstable. Having found the intervals of x in which the transitions occur, we then compute the

bulk CdTe mole fractions on the convective and morphological neutral curves using a bisection
method.

To compute the critical bulk CdTe mole fraction x* (i.e., the minimum on the

morphological neutral curve), we arbitrarily choose a wavenumber and compute the

corresponding x==on the morphological neutral curve using the procedure described above. We

then fix x= at the value computed in the previous step, and compute the eigenvalues o for a

discrete set of wavenumbers in a chosen range. We next select the wavenumber from among this

set at which the _ with largest real part was obtained. If this wavenumber is at an endpoint of

the chosen range, we extend the range until the wavenumber corresponding to the largest Re(G)

is inside the range. We then select this wavenumber and determine the corresponding x on the

neutral curve. We continue this process until the relative change in x is less than 10 -6. We
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compute x*-- following the same procedure.

6. Results

The solutions of (13-16) depend on a number of parameters, as defined in §2-4.

(Solutions on a finite interval depend also on h.) Restriction of the analysis to the pseudobinary

system Hgl_xCdxT e reduces the parameters to the solidification rate VI, liquid-side

temperature gradient GL, bulk CdTe mole fraction x ,. and rotation rate £1o. The

thermophysical properties of the liquid and solid (other than liquid density) are taken as

constants and evaluated using the functional forms given in Appendix A at the bulk CdTe mole

fraction and corresponding liquidus or solidus temperatures.

We present our results in figures 2 and 3 in terms of stability boundaries in the Vi-x =

plane for GL= 25 and 50 K cm -1 and several rotation rates _o. The stability boundaries

consist of some portion of the morphological branch joined to an oscillatory convective branch.

The solid curve in each figure represents the minimum on the neutral curve corresponding to

morphological instability (x*=). The dashed curve denotes the maximum on the neutral curve

associated with the onset of buoyancy-driven convection (x*=*).

For GL= 50 K cm -1, figure 2 shows the stability boundaries for E_o= O, 25, 50, and 100

rpm. Above the morphological branch, disturbances grow for some range of wavenumber a and

plane-front solidification is unstable. Similarly, below the convective branch appropriate to

each rotation rate shown, disturbances grow for some range of a. However, between the

morphological branch and the convective branch associated with each rotation rate (i.e., for

x=**< x=< x*), disturbances decay for all wavenumbers and plane-front solidification is stable.

Note that the morphological branch is unaffected by rotation, whereas as _o increases, the

convective branch is shifted downward. The critical bulk CdTe mole fraction x*=* on the

convective branch is a decreasing function of _o at any solidification rate, clearly indicating

the inhibitory effect of rotation on the onset of buoyancy-driven convection. Beyond the critical

solidification rate (denoted by vIcr ) at which the convective and morphological branches

intersect, there is no stable range of bulk CdTe mole fraction x=. Thus, plane-front

solidification is unstable at all bulk CdTe mole fractions for sufficiently high solidification

rates. The critical solidification rate v1cr at which the morphological and convective branches

intersect occurs at higher x= with increasing rotation rate Do. The (_ritical va!ue ViCr is

increased by more than a factor of ten at Do = 100 rpm relative to the nonrotating case. We also
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note that the convective branch has a relatively shallow local minimum near V l = 1psec -1, the

location of which depends only weakly on _o. Thus, for a given rotation rate, operation at the

solidification rate corresponding to this local minimum allows plane-front solidification to be

conducted stably at the lowest value of x=.

For GL= 25K cm -1 and /_o= 0 and 100 rpm, figure 3 shows stability boundaries in the

Vl-x= plane analogous to those for GL= 50 K cm -1. As expected on the basis of the results of

Coriell et al. [13] for Pb-Sn without rotation, the morphological branch is shifted to the left,

reducing the range of solidification rates and bulk mole fractions for which plane-front

solidification is stable. On the other hand, the convective branch is shifl;ed downwards relative

to the GL= 50 K cm -1 case, corresponding to an increase in the range of stable operating

conditions. We note that decreasing the temperature gradient has very little effect on the onset

of convection in a nonrotating layer, but reduces the range of stable bulk CdTe mole fractions by

more than twofold for a layer rotating at 100 rpm. The critical value of V[ is higher by more

than a factor of five at _o = 1O0 rpm relative to the nonrotating case, although the degree of

stabilization is less than the factor of ten predicted for GL= 25 K cm -1. Although the reduction

in x has very little effect on the critical value of VI at which the morphological and convective

stability boundaries intersect in the nonrotating case, for/_o = 100 rpm the critical value of Vz

decreases by a factor of three when the temperature gradient is reduced.

As discussed for the Pb-Sn case [37], at each value of _o the onset of morphological

instability occurs via a short wavelength (large wavenumber) instability, while convection

sets in via disturbances with relatively longer wavelengths. In the following section this point

is discussed in the context of the mechanism by which rotation inhibits the onset of convection.

7. Discussion

During directional solidification of binary alloys cooled from below and characterized by a

linear equation of state, with rejection of a light solute at the liquid-solid interface (e.g., Pb-

Sn), the vertical temperature and solute gradients are stabilizing and destabilizing,

respectively, throughout the liquid layer. In the Pb-Sn system, the onset of buoyancy-driven

convection occurs via monotonically growing disturbances, as shown by Coriell et al. [13].

However, for the pseudobinary H__xCdxT e system, the CdTe gradient is everywhere

stabilizing, and adjacent to the liquid-solid interface there can exist a sublayer in which the

thermal stratification is destabilizing. In this system, the onset of convection occurs via
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oscillatory disturbances. We note that, as shown in Figures 2 and 3, the system is unstable at

the indicated values of GL for all VI when x= is sufficiently small, corresponding to the absence

of a stably stratified thin liquid layer adjacent to the interface for small x=.

For Pb-Sn alloys we have shown [37] that significant suppression of the onset of

buoyancy-driven convection occurs at modest rotation rates, and is due to the well-known

Taylor-Proudman mechanism. According to the Taylor-Proudman theorem [36], =_=_3d.y_motion

parallel to the axis of rotation in a uniformly rotating inviscid fluid is prohibited. If this

theorem applied to viscous fluids, steady convection would be prohibited, since cellular

convective flow must have a vertical component. Instead, in viscous fluids the onset of steady

convection is inhibited, with the degree of inhibition (expressed as an increase in x=)

increasing with rotation rate. Although the Taylor-Proudman theorem strictly applies only to

steady flow, the Coriolis acceleration also suppresses the oscillatory onset of buoyancy-driven

convection during directional solidification of Hgl_xCdxT e as shown in §6. It is not surprising

that the morphological instability is unaffected by rotation since it occurs at very short

wavelengths, with the motion nearly perpendicular to the solidification front (i.e., aligned with
the rotation axis).

For a horizontally unbounded fluid layer in which density depends linearly on temperature

and composition and no phase change occurs, a linear analysis [45] shows that Coriolis effects

generally inhibit the onset of convection (by the Taylor-Proudman mechanism). However, for

some combinations of Pr, Sc, and the dimensionless rotation rate (characterized by a Taylor

number Ta) and solute and temperature gradients (characterized by solutal and thermal

Rayleigh numbers Ras and RaT) , rotation destabilizes the layer (on a linear basis) relative to

the nonrotating case. This occurs only when convection sets in via oscillations and the natural

frequency of a buoyant fluid element is tuned (bY rotation) so that the critical RaT has a local

minimum as a function of Ta. With linear gradients and no phase change, this destabilization is

found for Pr and Sc both less than unity [45], although there is no apparent reason why it

cannot occur under other conditions when onset is via an oscillatory mode. We have found no

such destabilization by rotation for the solidification of H__ xCdxTe"

Even though our analysis is limited to horizontally unbounded layers, work for Single-

component fluids not undergoing phase change [48,49] suggests that for fixed finite aspect

• 2 //0ratios (ratio of mold radius to height) our predictions will be qualitatively correct if Qo Ro

(a Froude number, where R° is the mold radius) is sufficiently small. For the onset of thermal
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convection in rotating water or mercury layers heated from below, the excellent quantitative

agreement between linear stability theory for a horizontally unbounded layer [41-43] and

experimental work for finite aspect ratios [43,50,51 ] clearly demonstrates the potential of the

Coriolis acceleration to suppress buoyancy-driven convection in a rotating fluid.

The results of a linear stability analysis are subject to the caveat that even when

infinitesimal disturbances are predicted to decay, larger disturbances might grow. Indeed, for

rotating fluid layers heated from below, the onset of thermal convection can occur at lower

Rayleigh numbers than predicted by linear theory [52-54]. However, in that case accounting

for disturbances of noninfinitesimal amplitude modifies only the degree of stabilization

predicted.

The modest rotation rates that can significantly inhibit the onset of convection in the

H__xCdxTe and Pb-Sn systems make uniform rotation about the vertical a good candidate for

experimental verification. Experiments should be conducted with completely filled cylindrical

molds, insulated on the vertical surface, and mounted on the axis of a rotating horizontal

turntable. If these precautions are not taken, the Coriolis-related stabilization may be

overwhelmed by other effects. For example, if the liquid's top surface is in contact with a gas or

vacuum, it and the liquid-solid interface will be nearly paraboloidal, which may lead to radial

segregation in the solid for high rotation rates or large mold radii. Cooling the vertical surface

leads to a radial temperature gradient and centrifugal effects. For these reasons, our results

cannot be compared to earlier experimental work [30-33].

We note that the experimental work of M_iller [23] and Weber et al. [24] focuses on the

effect of rotation on the time-dependence of the supercritical flow, with no information given on

suppression of the onset of motion. Furthermore, although these authors concluded that the

Coriolis acceleration is key to eliminating striations at high rotation rates, their experimental

design complicates the separation of Coriolis effects from the "pseudo-gravitational" effects

associated with high centrifugal accelerations.

Finally, Antar [55] has recently presented a linear analysis of the onset of convection in a

fluid layer cooled from below, using an approximate equation of state for Hgl_xCdxTe. Although

this work purports to consider "convective instabilities in the melt for solidifying mercury

cadmium telluride", it differs from ours in that it includes no phenomena associated with

solidification (existence of a moving or deformable interface where phase change occurs,

nonlinear basic state solute stratification due to rejection or preferential incorporation at the
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interface, latent heat effects, etc.) Comparison to its results is further precluded since the

linear basic state thermal stratification and the definition of the temperature difference AT

across the fluid layer are inconsistent. Specifically, the bottom temperature (see Antar's eqn.

(1)) is To-AT , which is inconsistent with the definitions of To (temperature where ap/aT is

zero, determined by the equation of state) and AT. Put differently, Antar defines AT as the

temperature difference across the layer, (e.g., AT=jTtop_Tbottornl=lT(d)_T(O)l)" His

temperature profile, however, yields T(d)=To-(do_d)AT/do and T(O)=To-AT , from which it

follows that IT(d) - T(0)I = d AT/do, which is inconsistent with the definition of AT. This error

vitiates the analysis, which uses a thermal Rayleigh number based on a temperature difference

inconsistent with the basic state. That this inconsistency is not simply an apparent one due to a

typographical error is confirmed by reference to an earlier paper [`56] which uses the same

basic state and disturbance equations. A different (and very unusual) definition of AT (related

to the overall temperature difference by a constant dependent on the top or bottom temperature;

see figure 1 of [56]) was used to maintain consistency. That definition of AT was the only one

compatible with the basic state, and hence with the analysis and results. Unfortunately, in

reference .55, AT is defined as the overall temperature difference, which is wrong.
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Appendix A

The thermophysical properties of the liquid and solid (other than the density of the liquid)

are taken as constants evaluated using the functional forms shown below at the bulk mole

fraction and corresponding liquidus or solidus temperatures Tli q and Tsol).

We have taken the density of solid Hgl_ xCdxTe as

+1-;
!

PS PCdTe PHgTe (A 1)

where _ = XMCdTe/M is the CdTe mass fraction, the molecular weights Of CdTe and HgTe are

Mccrre= 240 g/tool and MHgTe= 328.2 g/tool, M= XMCdTe+(I_X)MHgTe ' and PCdTe and PHgTe
are the solid densities of pure CdTe and HgTe, respectively, represented by

PCdTe= _0 + _'1T (AZa)
and

PHgTe= _0+_1T' (A2b)

where the coefficients _i and _i are determined by least-squares fits to the experimental data of

Glazov et al. [57] and Mokrovskii and Regel [39], respectively. The values of ;_i and ¢i are

;_0= 5.820 g cm -3 _'1= -8.095 x 10 -5 g cm-3K -1

_0 = 8.201 g cm -3 _1=-1.230 x 10 -4 gcm-3K-1

The viscosity is represented over the entire range by

v = 1x 10 -2 exp(4)0+¢)l/T) cm2sec-1, (A3)

where 4)o= -3.401 and 4)1= 3445 K are computed by least-square s fit to the experimental data

of Glazov et aL [58] for pure CdTe. Due to the lack of experimental viscosity data for HgTe, we

use (A3) for the viscosity of Hg]_xCdxTe ' independent of comPosition.

The thermal diffusivity of liquid and solid Hgl_xCdxT e are approximated by

KL= (E0 +Elxl/Z+Ezx)In(T/K) - (U0 + U1xl/2+ Uzx), (A4a)

where the coefficients

2

KS= _ Ti(Soi + Sli x1/2+ $2ix)
j=O

(A4b)

E0= 0.104 cm2sec -1
El= -0.146 cmZsec -1
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E2= 0.118 cmZsec -1

UI= -0.941 cm2sec -1

Soo: -5.945 x 10 -3 cm2sec -I

Szo= -0.I 14 cmZsec -1

S11= 1.646x10 -4 cmZsec-1

So2= -7.829 x 10 -8 cm2sec-lK-2

S2z= -4.120 x 10 -7 cm2sec-lK-2

Uo= 0.668 cm2sec -1

U2= 0.783 cmZsec -1

$1o= 1.698x10 -2 cm2sec-1

Sol = -7.148 x 10 -3 cm2sec-lK -1

$21= 4.475x10 -4 cm2sec-lK-1

S12= 1.969xlb-7 cmZsec-lK-Z

are determined by least-squares fit to the experimental data of Holland and Taylor [57].

The specific heat of liquid Hgl_ xCdxT e is represented by

z 2-i

Cp,L(T,x)= _ _, qij xi (T_ 943 K) j .
i=o j=o

The coefficients qijfound by least-squares fit to the calculated specific heat of Su [60] are

qoo = 65.08 J K-1 tool -1

%2= 3.961 x 10 -4 J K-3 mo1-1

ql ]= 7.004 x 10 -3 J K-2 mol-1

%1 = -0.101 J K -z mo1-1

ql o= 1.648 J K -1 mo1-1

qzo = -5.044 x 10 -3 J K-1 tool -1

(A5)

where we have used the relation 1 mol ---2 g-atom for the pseudobinary system Hgl_xCdxTe to
convert Su's data (in cal K-1 g-atom -1) to J K-1 mo1-1"

The specific heat of solid Hgl_xCdxT e is taken as

Cp, S = ( I - x) Cp,S,Hgme + X Cp,S,CdTe , (A 6 )

where the specific heats of pure HgTe and CdTe vary with temperature [61 ] according to

co,_._o=I52o9+908xlO-_(T/K)1JK-'mo,-' (A7a)

[.oo+33x / JK-,=o,-, (A7b)

and

The latent heat of fusion is approximated by

L(x) = (1- X)LHgTe + X LCdTe , (A8)

where LHgTe = 3.6 x 104J / mol and LHgTe = 4 x 104J / moi are used for the pure components
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[61]. The interfacial energy is estimated by comparing Hgl_xCdxTe and InSb (in reference 62

Ge and InSb are compared to estimate the interfacial energy of InSb)

L aZ

\ o )Hg__xCdxTe k )lnSb

(A9)

where the latent heat of fusion per unit volume for Hgl_xCdxT e is taken to vary linearly with

CdTe mole fraction (A8), ao = 6.4797 A for InSb, and ao I 6.465 A is.used for Hgl_xCdxT e

independent of x [58]. Here the surface tension is taken as O'lnSb = 8.5 x 10 -6 J cm -2, and the

latent heat of fusion per unit volume of InSb is L = 1.20 x 103 J cm -3. The capillary coefficient
is then computed from

_u = O.Hg__xCdxTe _ , (A 10)

where Tliq is the liquidus temperature for a given bulk mole fraction of CdTe in the liquid.

We determine the liquidus and solidus temperatures

the liquidus slope

Tliq = (943 + 681 x - 372 x2) K,

Tso_=(943+ 202x-lS0x z+324x 3) K,

m L=(681- 745x) K,

and the segregation coefficient

(A1 la)

(A 11 b)

(A12)

= - -6 -2 2

k x(0.30 2.24x10 -3K-1T$ot+2.67x10 K Tsoj) forx>O.1, (A13a)

k = 3.74
forx < 0.1, (A13b)

as functions of CdTe mole fraction by least-squares fits to data of Szofran and Lehoczloj [63].

Finally, the solute diffusion coefficient is taken as DE = 5.5 x 10 -s cmZ/sec, the value most

commonly used in the literature [3].
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Figure 1.

Figure 2.

Figure 3.

Figure Captions

Schematic depiction of the stability boundary.

Vz-x stability boundaries for GL= 50 K cm -1 with _) = 0, 25, 50, and 100 rpm.

VI-x= stability boundaries for GL= 25 K cm -1 with _0 = 0 and 100 rpm.
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Abstract

The convective and morphological instabilities in a horizontally unbounded binary liquid

undergoing directional solidification by cooling from below are studied by means of linear

stability analysis. The possibility of using steady uniform rotation about a vertical axis to

suppress the onset of buoyancy-driven convection is considered for both plane-front and

dendritic solidification.
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For dilute Pb-Sn alloys, our results clearly show that the onset of convection in a

horizontally unbounded layer undergoing plane-front solidification can be suppressed

significantly at modest rotation rates. Specifically, plane-front solidification is linearly

stable at higher Sn concentrations in a rotating configuration than in a nonrotating one. The

predicted inhibitory effects of rotation on convection are discussed in terms of previous

experimental and theoretical studies of the effect of rotation on the onset of buoyancy-driven

convection in single-component fluids heated from below and in binary fluids subject to

thermal and solutal stratification.
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We also consider the stability of one-dimensional plane-front solidification of the

pseudobinary Hg+.xCdxT e system (of considerable Importance due to its wide application in the

fabrication of electro-optic detectors) in which the liquid density does not depend

monotonically on temperature (e.g., has a local maximum) for some range of the bulk solute

composition. In contrast to the normal case where the density depends monotonically on

temperature and composition (e.g., the Pb-Sn alloys considered by Corlell et al. (1980)),

for certain combinations of the operating parameters (solidification rate, nominal liquid-

side vertical temperature gradient, and bulk solute concentration) there can exist a critical

value of the bulk mole fraction (C.) below which plane-front solidification is unstable at all

dimensionless solidification rates 7, whereas in the normal case plane-front solidification at

any C. is linearly stable for all sufficiently small dimensionless solidification rates.

Moreover, when the density varies nonmonotonically with temperature, there can exist a

critical value of the dimensionless solidification rate "Ycsuch that for "y> 'Yc plane-front



solidificationis unstablefor all C,. In this case, for y < % there is a finite rangeof C. for

which plane-front solidification Is stable. This latter result differs from the normal case,

for which at all dimensionlesssolidificationrates, plane-frontsolidification is stable for all

values of C. lying belowsome critical value. The stability boundariesand neutral curves,

differingqualitativelyfrom thosefor the normalcase, are discussedin terms of the existence

adjacent to the liquid-solid interface of a sublayer in which the thermal stratification is

destabilizing. For Hgl.xCdxTe,our resultsshowthat uniformrotationat modestrotationrates

can significantlysuppressthe onsetof buoyancy-drivenconvection.

For a binary liquid undergoing solidification by cooling from below, we assess the

stability of the one-dimensionaldendritic solution.The mushyzone, consisting of liquid and

solid phases, is modeled as a porous medium with anisotropic permeability. The local

porosity, as well as the location of the boundaries separating the solid from the mushy zone

and the mushy zone from the liquid, are taken to be dynamical variables. The basic state,

computed using a thermodynamically self-consistent nonlinear model of solidification, exists

for only some combinations of the operating parameters (solidification rate, nominal vertical

temperature gradient, and bulk solute concentration). The dendritic solution also exists

under conditions for which plane-front solidification is linearly stable with respect to

morphological disturbances. This point is discussed in the light of previous work on

nonlinear morphological instability. A division of the parameter space according to the

existence and stability of solutions corresponding to plane-front and dendritic solidification

is presented and discussed for the Pb-Sn system. Uniform rotation is shown to be less

stabilizing than in the plane-front case.
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CHAPTER 1

r

Introductlon

1.1. Motivation and Previous Work

Many solid materials of practical interest are prepared by directional solidification of

binary and multicomponent liquids. Examples include high-strength, high-temperature

alloys for use in turbine blades, electronic and photonic materials, and protein crystals for

use in x-ray crystallography.

In those applications in which the goal is to produce large, nearly perfect single crystals,

it is frequently desired to achieve "plane-front" solidification. In such a situation, the

liquid-solid interface remains planar, the temperature, concentration, and pressure fields

are one-dimensional with their gradients normal to the interface, and the fluid motion (due

solely to shrinkage) is in the direction of the Interface motion and independent of position.

The process is steady in a reference frame moving with the interface. It is easily shown that a

necessary condition for the existence of this steady one-dimensional state is that the density

gradient be parallel or anti-parallel to the gravitational acceleration. Even when this

necessary condition is satisfied (e.g., by cooling the liquid from above or below, rather than

from the side), however, several instabilities can cause departures from the nominally

steady one-dimenslonal plane-front case.

First, the liquid-solid interface is subject to a morphological instability (Mullins &

Sekerka 1964) deforming the planar interface and ultimately leading to formation of a two-

phase "mushy zone" of dendrites and interdendritic liquid. In turn, departures from one-

dimensionality and steadiness in the mushy zone result in nonuniform solute distribution in

the solidified material. Second, the densityof a binary liquid depends on both temperature and

composition. When a liquid is solidified by cooling from below, preferential rejection or

incorporation of solute at the interface is potentially destabilizing if the solute-enriched (or
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depleted) liquid at the interface is less dense than the warmer overlying bulk liquid. This

solute gradient can overcome the stabilizing temperature gradient, leading to buoyancy-

driven convection in the liquid, thus providing another mechanism, besides molecular

diffusion, for redistributing solute from the interface into the bulk liquid.

Convective and morphological instabilities in a binary liquid undergoing directional

solidification were first studied by Coriell et al. (1980). They showed that the buoyancy

force does not sensibly alter the criterion for onset of the morphological Instability, which

occurs at shorter wavelengths than does the convective mode. Subsequent work has been

reviewed by Glicksman et a/. (1986) and Sekerka & Coriell (1987); recent work includes

papers by Polezhaev (1988), M011er (1988), Young & Davis (1989), Huppert (1990),

Davis (1990), and Worster (1991).

Buoyancy-driven convection during directional solidification of binary alloys has been

shown to be the dominant factor in the formation of "freckles', "channel segregates', and

other macrosegregation defects deleterious to the mechanical properties of directionally

solidified alloys. The formation and characterization of freckles in nickel-based superalloys

were first studied experimentally by Giamei & Kear (1970). Following their work, Poirier

et a/. (1981) investigated macrosegregation In electroslag Ingots, showed that convection in

the melt results In freckling in the solidified material, and suggested that rotation might

reduce freckling. Sarazin & Hellawell (1988) have experimentally demonstrated the

formation of freckles in Pb-Sn, Pb-Sb, and Pb-Sn-Sb Ingots. Specifically, compositional

convection, In the form of discrete plumes emanating from chimneys in a mushy zone of

dendritic crystals, has been observed by Copley et al. (1970) and Chen & Chen (1988) in

laboratory experiments using transparent aqueous ammonium chloride solutions. The

resulting convection leads to freckles strikingly similar to those found in Ingots cast of

metallic alloys. Ridder et al. (1981)studied the effects of fluid flow on macrosegregation in

nominally axisymmetric ingots and showed that melt convection results in macrosegregation

in the solidified materials. In a theoretical study of a binary alloy solidifying radially
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Inward, Maples & Poirler (1984)concluded that macrosegregation results from mushy-zone

convection driven by nonuniform temperature and solute distributions. A recent review of

the effects of buoyancy-driven convection on macrosegregation in binary and pseudobinary

systems has been given by M011er (1988). In particular, much attention is currently

focused on the questions of when and how the freckles and channel segregates and other

macrosegregation defects are formed, with the main goal being to grow materials that are free

of such macrosegregation defects resulting from convection during solidification.

One means by which the onset of convection can be inhibited in a density-stratified fluid

layer is to subject the layer to a magnetic field aligned parallel or perpendicular to the

stratification (M011er 1988). For horizontal Pb-Sn layers solidified from below at several

growth velocities, Coriell et al. (1980) Showed theoretically that the critical Sn

concentration above which instability occurs can be Increased an order of magnitude by

applying a vertical magnetic field of the order of one tesla. This technique requires that the

liquid be an electrical conductor, and so is applicable to metallic alloys, semiconductors, and

aqueous solutions.

Macrosegregation might also be controlled by Increasing or decreasing the magnitude of

the gravitational acceleration or changing its direction. Alexander et al. (1989) and Heinrich

et a/. (1989a-b)theoretically studied the effect of reduced gravity on macrosegregation in

directionally solidified alloys. These authors suggested that macrosegregation in alloys can be

reduced by solidification in a low-gravity environment. M011er (1990) and Weber et al.

(1990) have recently discussed solidification under conditions where the magnitude of the

body force is greater or less than that of normal gravity.

Both gravity and an external magnetic field are body forces which act on the liquid. As

opposed to contact forces such as pressure, viscous stress, and surface tension, which act on

the surfaces of a fluid element, body forces act on the mass of a fluid element. Hence, their

local strengths are proportional to the local fluid density. In addition to gravitational and

magnetic body forces, there are other "pseudo-body forces" which manifest themselves as
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fictitious accelerations (centripetal and Coriolis) when the reference frame to which the

fluid motion is referred undergoes steady rotation relative to an Inertial frame. (An

additional fictitious acceleration, with which we will not be concerned, manifests itself if the

rotation of the noninertial frame relative to the inertial frame is unsteady.) Although these

accelerations do not correspond directly to forces (as in the case of the gravitational

acceleration), they have the same mathematical form as accelerations associated with body

forces, and can have dynamical consequences equally as profound as the gravitational and

magnetic forces discussed above (Greenspan 1968). In light of this, and the fact that

modification of the gravitational field or Imposition of an external magnetic field may not

always be feasible, the possibility of using rotation to suppress the onset of convection in a

liquid undergoing directional solidification is of interest.

Several effects of rotation on solidification have been discussed by Schulz-DuBois

(1972). The experiments of Kou (1978), Kou et al. (1978), Sample & Hellawell (1984),

M011er (1990), and Weber et a/. (1990) have shown that rotation can significantly reduce

the degree of macrosegregation in binary alloys directionally solidified under plane-front or

dendritic conditions. Kou and Kou et al. studied the effect of steady rotation about a vertical

axis on freckle formation in Sn-Pb alloys. Sample & Hellawell considered solidification of

the transparent alloy NH4CI-H20 in a crucible rotating about an axis inclined between 0 and

30 degrees with respect to the vertical. M011er (1990) and Weber et al. have studied the

effect of rotation on the growth of Te-doped InSb crystals, and have shown that striations can

be suppressed at sufficiently high rotation rates. These studies show that the degree of

macrosegregation (freckles and striations) can be significantly reduced by rotation.

There are two means by which steady rotation about a fixed axis can influence the motion

of a fluid. In terms of a reference frame rotating with constant angular velocity _ about an

axis, these correspond to the centripetal and Coriolis accelerations, for which the terms

PL_X_xr and 2PLQXU, respectively, are added to the momentum equation. Here, r is the
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position vector measured from the axis of rotation, u is the local fluid velocity relative to the

noninertial reference frame, and PL iS the local density of the liquid.

Previous theoretical studies of the effects of rotation on the onset of buoyancy-driven

convection have been restricted to cases where no solidification occurs. For a horizontally

unbounded layer of a single-component fluid, Chandrasekhar (1953), Chandrasekhar &

Elbert (1955), and Niiler & Bisshopp (1965)have shown that steady uniform rotation

about a vertical axis can significantly inhibit the onset of convection, with the Coriolis-

related Taylor-Proudman mechanism (Chandrasekhar 1961) playing the dominant role. The

effects of centripetal, Coriolis, and gravitational accelerations on convection in horizontally

confined rotating fluids in cylindrical container s of various aspect ratios were considered in

an early series of papers by Homsy & Hudson (1969, 1971a-b, 1972). More recently, for

a single-component flu!d Weber et al. (1990) have computed buoyancy-driven flows

equivalent to those that can be driven by a temperature gradient maintained between the ends

of an otherwise insulated right circular cylinder rotating at constant angular velocity about

an axis perpendicular to and intersecting the cylinder axis but not passing through the

cylinder. Three-dimensional computations, in which the variation of the magnitude of the

centripetal acceleration D.xQxr along the cylinder axis was neglected (a good approximation

when the cylinder length is small compared to the shortest distance between the axis of

rotation and the cylinder), were performed with the term accounting for the Coriolis

acceleration 2_xu either included or omitted. Weber et al. found excellent agreement

between experiment and computation when the Coriolis acceleration was included.

For a binary fluid, Pearlstein (1981) has shown that the Coriolis acceleration can

either stabilize or destabilize a horizontally unbounded layer, depending on the values of the

Prandtl and Schmidt numbers, the dimensionless rotation rate (expressed In terms of a

Taylor number), and the dimensionless temperature or solute gradient (expressed in terms

of thermal and solutal Rayleigh numbers). Other work concerning the effect of rotation on

doubly-diffusive convection in binary fluids (with no phase change) has been reported by
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Sengupta & Gupta (1971), Masuda (1978), Antoranz & Velarde (1978, 1979), Schmitt &

Lambert (1979), Riahi (1983), Worthem et al. (1983), and Bhattacharjee (1988a-c).

1.2. Overview of the Dissertation

The purpose of the present work is to investigate the onset of morphological and

buoyancy-driven convective instability in a binary liquid undergoing directional

solidification and to identify the mechanism by which Coriolis effects affect the onset of

buoyancy-driven convection. We consider the stability of plane-front solidification of a

binary alloy (Pb-Sn) and the pseudobinary mercury cadmium telluride system, and the

dendritic solidification of Pb-Sn.

The dissertation is organized as follows. In Chapter 2, the convective and morphological

instabilities in a binary liquid undergoing plane-front solidification by cooling from below

are studied. The effects of rotation on the onset of buoyancy-driven convective and

morphological instabilities are considered using a linear stability analysis. Results for dilute

Pb-Sn alloys are presented and discussed.

In Chapter 3, we use a linear stability analysis to study the onset of instability in binary

liquids which exhibit a density maximum in the interior, and solidify with a nominally planar

interface. We consider the stability of plane-front solidification of the pseudobinary

mercury cadmium telluride system (Hgl.xCdxTe, where x is the bulk mole fraction of CdTe)

from the melt. The effect of a steady uniform rotation about a vertical axis has also been

i
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investigated, as for the Pb-Sn system.
w

In Chapter 4, we use a linear stability analysis to study the buoyancy-driven convection

in the liquid and mushy zone and to investigate the effects of rotation on convective Instability i

for alloys solidified dendritically by cooling from below. The mushy zone, consisting of +

dendrites saturated by interdendritic liquid, is modelled as a porous medium with anisotroplc

permeability. The local porosity, as well as the locations of the mushy-zone/solid and _
gB
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liquid/mushy-zone interfaces are taken as dynamical variables, and so are determined as part

of the solution. The analysis is illustrated by results for the Pb-Sn system.

The notation is generally consistent throughout the dissertation excepting the usage of C

and its subscripted variants as composition variables, which are defined when first used in

each Chapter. The numerical techniques employed in each Chapter are generally similar, but

differ in important details, and hence are explained in full in each case.
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CHAPTER 2

Coriolis Effects on the Stability of Plane-front

Solidification of Dilute Pb-Sn Binary Alloys

2.1. Introduction

During directional solidification of alloys, it is frequently desired to produce large single

crystals with very low densities of macrosegregation defects and other imperfections. In

principle, this can sometimes be achieved by "plane-front" solidification, in wh!ch the melt-

solid interface remains perfectly planar. In such a case, the solidification process would be

steady in a reference frame moving with the interface, and the only spatial variation would be

in a direction normal to the interface. However, in real systems, several instabilities can

cause departures from the nominally steady and one-dimensional plane-front case.

Buoyancy-driven convection occurring during directional solidification of binary alloys

leads to the formation of freckles and other macrosegregation defects deleterious to the

mechanical properties of directionally solidified alloys. In particular, much attention is

currently focused on the questions of when and how the freckles, channel segregates, and other

macrosegregation defects are formed, with the main goal being to grow materials that are free

of such macrosegregation defects resulting from convection during solidification.

The possibility of using steady uniform rotation about a vertical axis to suppress the

onset of buoyancy-driven convection during solidification of a binary alloy is considered

using a linear stability analysis. The predicted inhibitory effects of rotation on convection

are discussed in terms of previous experimental and theoretical studies of the effect of

rotation on the onset of buoyancy-driven convection in single-component fluids heated from

below. The plane-front solidification of Pb-Sn binary melts, for which the density depends

monotonically on temperature and composition, is considered.
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In this Chapter, we use linear stability analysis to study the effect of the Coriolis

acceleration on convective and morphological instability for Pb-Sn alloys which solidify with

a nominally planar interface. This work serves to identify the mechanism by which Coriolis

effects affect the onset of convection in solidifying binary alloys. The analysis is illustrated

by results for the Pb-Sn system.

2.2. Basic State and Linear Disturbance Equations

We adopt the model of solidification used by Coriell et al. (1980), in which the

Oberbeck-Boussinesq equations govern motion in the liquid. In a reference frame translating

with the nominally steady velocity (Vi) of the moving interface and rotating with constant

angular velocity £4, as shown in figure 2.1, the basic state

= (0, O, -- .._------Vi ) ,
PLO (2.1)

PsVx PLOKL -..,'

o o(_ ,)}.
PLODL

[, _

(2.2)

(2.3)

(2.4)

is the same used by Coriell et al., where _, TL, CL, and Ts are, respectively, the basic state

velocity (referred to the moving frame), temperature and solute concentration in the liquid,

and temperature in the solid, KL and Ks are the thermal diffusivities of the liquid and solid,

respectively, DL is the diffusion coefficient, Ps is the solid density, PL0 iS the liquid density of

pure lead at its melting point, c. is the bul k concentration, G L is the liquid-side temperature

gradient at the planar interface, V i is the nominal growth rate, k is the segregation

coefficient, mL is the slope of the liquidus, T M is the melting temperature of Pb, ¢ = PS/PL0- 1

iS the fractional shrinkage, Gs = (LV] + GLkL)/k s is the solid-side temperature gradient at the
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planar interface, kL and ks are the thermal conductivities of the liquid and solid,

respectively,andL is the latentheatof fusionperunitvolume. (All concentrationsused in this

Chapter are weight percentages.) We note that the basic-statetemperaturedistributionin

the solid (2.4) is valid only near the interface.

As in stability analyses of other flows subject to uniform rotation (Chandrasekhar

1953; Chandrasekhar& Elbert 1955; Niiler & Bisshopp1965; Pearlstein1981; Nakagawa

& Frenzen 1955), the linear disturbance equations we use differ from those for the

nonrotatingcase only by additionof the Coriolisaccelerationto the disturbancemomentum

equation. (This approach neglects the consequences of density variation in the term

corresponding to the centripetal acceleration, and is discussed in §2.6.) The equations

governing small disturbances in the liquid are

V=u=0,

_)u _ Ps _)u _ __ aT g TLi z - ac g CLiz + v V2u,
_)t PLOVI_'+ 2 _ x u = PL0

PLO _ PLOtCL

ac,._ v, ÷Gow xp(- :) =D,
at PLO PLoDL

(2.5)

(2.6)

(2.7)

(2.8)

where the dependent variables u, w, p, TL, and C L are, respectively, the disturbance values of

the velocity, its z-component, pressure, temperature, and concentration in the liquid. Here,

iz is the unit vector in the z-direction, g is the magnitude of the earth's gravitational

acceleration, v is the viscosity, a T and a c are the thermal and solutal expansion coefficients,

respectively, Gc = (k-1)psC.Vx/(kPLoDL) is the concentration

interface, Q = _o iz is the angular velocity, and Qo is a constant.

equation in the solid is

at - i _ = Ks V2Ts '

gradient at the planar

The disturbance energy

(2.9)

J

=
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where Ts is the disturbance temperature in the solid.

Taking the curl of (2.6) and the dot product of the result with iz, we obtain an equation

awaOz_ ps v; aOz_2 v v20)z
at PLO az _- = ( 2.1 0 )

for the z-component of the vorticity, o_z. After twice taking the curl of (2.6), the vertical

component of the resulting equation is

V2w ps v, V2w
at PL0 az (2.11)

The disturbance boundary conditions at the interface are

u(x,y,0,t) = eV[ an(x,y,t)
ax ' (2.12a)

v(x,y,0,t) = _V i a_-i(x,y,t_,
ay (2.12b)

w(x,y,O,t) = -e a_(x,y,t)
at ' (2.12c)

aw('x,y,0,t)
= - sv I v211 (x,y,t)az (2.12d)

L a_l(x,y,t) = _ kL aTL(x,y,O,t ) aT$(x,y,O,t)
at az + ks az + ( ps GLvxk_-GsVI_') _(x,y,t),(2.12e)

PL0 KL KS "

Vj22p%C-TI(x,y,t ) + Vl CL(X,y,0,t ) + C. a_l(x,y,t)=_ PLoDI, aCL(x,y,0,t )
DLPL0 k'- at ps(1-k) az , (2.12f)

TL(x,y,0,t) + G L q(xly,t)= Ts(x,y,0,t ) + G s 11(x,y,t), (2.12g)

TL(X,y,0,t) + GL "rl(x,y,t) = mE Gc 11(x,y,t) + m E CL(X,y,0,t ) + TM _ V2TI(X,y,t), (2.1 2h)

where _1 is the interface position and _ is the capillary coefficient.
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2.3. Nondimensionalization and Fourier Decomposition

we scale the velocity, time, length, temperature, concentration, and vorticity with

KL/H , H2/v, H, GLH, C., and _L/H 2, respectively, where H = DL/V l is the characteristic

length (associated with the destabilizing gradient of rejected solute, see (2.3)), and write the

horizontal and temporal dependence of the dimensionless disturbance quantities as exp(o_ +

lax X + iayY), where ax and ay are the x- and y-components of the wavevector, and o is the

temporal eigenvalue. Substitution into (2.7)-(2.11) ;ields

o(D 2_ a2)W _ _ D(D 2- a2)W = - Ra T a2 eL- Ras Lea 2 CL + (D 2 - a2)2w - _ DDz ,(2.13)

o'_z-_D_z =[_)DW+(D 2 a2)_z,

Pr o eL- P Le DeL = (D 2 - a2)eL- W exp(- pLe Z),

Sc 0 7,L - p DZ,L = ( D2 - a2)XL + _ W exp(- p Z)
Le

(2.14)

(2.15)

(2.16)

in the melt, and

Pro e s - Le De s = 1¢(D 2 - a2)es (2.17)

in the solid. Here, Pr = V/KL is the Prandtl number, Sc = v/D L is the Schmidt number,

Le = DL/_ L is the Lewis number, Ra T = (xTgGLH4/(_L v) and Ra s = (xcgC,H3/(DL v) are the

thermal and solutal Rayleigh numbers, respectively, _)= 2_oH2/v i=sthe square root of the

Taylor number, p = pS/PL0 is the density ratio, K = _S/KL iS the thermal diffusivity ratio,

and =- = (1-k)/k. The boundary conditions (2.12a-h) at the interface become

II

J
m

II

u

W(0) =-cProP, (2.18a)

DW(0) = ¢ Le a2 p,

_z(0) = 0,

(2.18b)

(2.18c)

m

II
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Sco_ =- k_. DOL(0)+ k_ DOS(0)+ Le (k_.p- k_./K - l/K) 13, (2.18d)

w

: =

(1 - G) 13= es(0 ) - eL(0),

(soo+k,), =- k D,,C0).

m ,_

(- a2 T_! + m* - 1) _ = _ ZL(0 ) + _BL(0),

(2.18e)

(2.18f)

(2.18g)

where W, X,L, _Z, and O L are, respectively, the amplitudes of the disturbances to the vertical

velocity, concentration, vertical vorticiiy, and temperature in the melt, e s is the amplitude

of the disturbance temperature in the solid, and _ (a constant) is the amplitude of the

disturbed interface position. Here we define dimensionless parameters k_.= GLkLH/LDL,

k_ = GLksH/LDL, m°= mLGc/GL ' T_ = TM_Y/GLH2, and G = Gs/G L. For the far-field boundary

conditions, we follow Coriell et al. (1980) and set all disturbances to zero

asZ-_ =_, (2.19a)W = DW = _z = X.L= OL = 0

e s =0 as Z _- -, (2.19b)

far from the interface.

2.4. Numerical Solution

Our objective is to find conditions under which infinitesimally small disturbances

neither grow nor decay for a finite number of wavenumbers, and decay for all other

wavenumbers. Disturbances which neither grow nor decay are said to be neutral. The

neutral disturbances can be of two types, depending on the Imaginary part of a. If the

imaginary part of O is zero for a neutral disturbance, the onset of instability will be via

monotonically growing disturbances (steady onset). If the Imaginary part of O is not zero, the

neutral disturbance will oscillate in time (oscillatory onset).
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In the previous section, we formulated an eigenvalue problem for two systems of

ordinary differential equations on two semi-infinite intervals (in the melt and in the solid),

coupled by boundary conditions at the deformable Interface. For convenience, we follow

Coriell et al. (1980) and solve the problem on a finite interval [-h,h], where 2h is the

dimensionless height of the computational domain. With regard to the far-field boundary

conditions at Z = + =0,we set all disturbances to zero

W = DW = _Z = ;EL= OL= 0 at Z=h (2.20a)

=--

I
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m

IB
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in the melt and

Os=0 atZ=-h (2.20b)

in the solid. We have used h = 10. (For steady onset, we have checked a number of our

results using more accurate asymptotic boundary conditions applied at Z = :1: h derived

following Keller's (1976) procedure, and have found excellent agreement between the

eigenvalues computed using the two sets of boundary conditions.) Since we use Chebyshev

polynomials in our numerical solution, we scale the vertical coordinates in the liquid and

solid regions by z 2 = ( 2 Z- h)/h and z I = ( 2 Z + h)/h, respectively, so that each region lies

between -1 and +1. The resulting system is then solved using a spectral Galerkin technique

developed by Zebib (1987). The problem is thus reduced to a matrix eigenvalue problem

A$.GBs=0, (2.21)

,_: where Gis the tem_ral eigenvalue, and the elements, of the square matrices A and B depend on

a2= a2 + a2, the square of the horizontal wavenumber, the bulk concentration C.., and the

other dimensionless parameters. The details are given in Appendix A.

in what follows, we characterize the stability of the nominally plane-front solution in

terms of the growth velocity V] and bulk concentration C., with all other parameters taken as

fixed. For each value of V l, we seek one or more critical values of C. (denoted by C: ) such
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that for C. < C'., disturbances decay for all wavenumbers, while for C. > C*,, disturbances

grow for all wavenumbers in some range. In order to determine the critical value(s) of C.,

we first determine the neutral curve (C. versus the wavenumber a) separating those

combinations of C, and a for which all temporal eigenvalues o lie in the left half-plane (a

stable basic state) from those for which at least one eigenvalue lies in the right half-plane

(an unstable basic state). To determine the bulk cc'lcentration on the neutral curve for an

arbitrarily chosen wavenumber a, we first guess a value of C. and compute all eigenvalues o

using (2.21). If all eigenvalues have negative real parts, the value of C, is increased by

doubling the previous value; otherwise the new value of C. is chosen as half the previous

value. This process is continued until we determine two values of C,, between which at least

one sign change is obtained in the real part of the least stable temporal elgenvalue. The

concentration on the neutral curve is then determined using a bisection method.

To compute the critical concentration C',. at which instability first occurs (i.e., the

minimum on the neutral curve), we arbitrarily choose a wavenumber and compute the

corresponding C, on the neutral curve using the procedure described above. We then fix C,

at the value computed at the previous step and compute the eigenvalues a for a discrete set of

wavenumbers in a chosen range. From this set we select the wavenumber corresponding to

the o with largest real part. If this wavenumber is at an endpoint of the chosen range, we

extend the range to include the wavenumber corresponding to the largest Re(a). We then

select this wavenumber and determine the corresponding C, on the neutral curve. We

continue this process until the relative change in C. is less than 10"s.

2.5. Results

The solutions of (2.13)-(2.19) depend on fifteen dimensionless parameters, as defined

in §§2.2 and 2.3. To determine the stability of a basic state with a nominally planar

interface, numerical values of these parameters need to be specified. (Solutions on a finite

interval depend also on h.) It ts therefore not possible to numerically explore the effects of
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more than a few combinationsof theseparameterson the onset of instability. In this work,

we havethus restrictedourselvesto the Pb-Snsystemwhich,due to the low meltingpointsof

bothcomponents,hasbeenthe subjectof severalexperimental studies. The parameter values

(other than _) are as used by Coriell et al. (1980) at reference conditions corresponding to

pure lead at its melting point. (The diffusivity of Sn in Pb corresponds to an infinitely dilute

solution.)

Totest our code, we first considered the nonrotating case, and compared our results to

those of Coriell eta/. Taking the liquid-side temperature gradient at the interface as

GL= 200 K cm -1, we computed neutral curves (C. versus a) for various values of the

solidification rate V_. The neutral curves were generally similar to those shown by Coriell et

a/. The only qualitative difference was that, in our work, several new oscillatory neutral

curves were found to branch from steady neutral curves found by Coriell et al. and in the

present work. We believe that our detection of these additional oscillatory neutral curves

(which in each case lie well above the critical value of G, and are hence of no practical

consequence) is due to use of a numerical technique which simultaneously computes a large

number of temporal eigenvalues at each combination of C,, and V I, as opposed to the shooting

technique of Coriell eta/., which individually computes the temporal eigenvalues by a one-

point iteration scheme. The solid and dashes curves represent the steady and oscillatory onset

of convection in each of the neutral curves.

For G L = 200 K cm -1, _o = 0 rpm, and V[ = 5 and 80 I_ sec -1, figure 2.2 shows neutral

curves similar to those obtained by Coriell et al. For V_ = 5 Iz sec -1, steady onset of

buoyancy-driven convective instability is found, and the critical concentration below which

the plane-front solidification is stable for all wavenumbers occurs on the convective branch,

as shown in figure 2.2(a). However, for V I = 80 I_ sec -1, morphological and oscillatory

convective neutral curves are obtained, and the critical concentration occurs on the

morphological instability curve, as shown in figure 2.2(b). Note that the critical
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wavenumber for the morphological instability mode is larger than that for the buoyancy-

driven convective mode.

For this temperature gradient, a transition between these two extreme cases is observed

for intermediate values of the solidification rate. Figure 2.3 shows a sequence of neutral

curves for Increasing VI, beginning with figure 2.3(a) for V I = 5 I_ sec -1 (figure 2.2a).

When the solidification rate is increased to V I = 125 I_ sec -1, the morphological neutral

curve appears at much higher wavenumbers. For V l = 15 I_ sec -1, one of the buoyancy-driven

convective branches pinches off and disappears (figure 2.3c). Another branch pinches off by

VI= 20 p. sec -1 (figure 2.3d). As the solidification rate is further increased to

V I = 3 0 p.sec -1, only one steady buoyancy-driven convective branch is left, and the critical

concentration has shifted to larger values (figure 2.3e). The steady convective branch

pinches off and becomes smaller with increasing solidification rate as shown in figure

2.3(f-h) for V l = 35, 37.5, and 39.375 I_ sec -1, respectively. Finally, for V I = 40 I_ sec -1

(figure 2.3i) the steady convective branch disappears and the minimum value of C.

(corresponding to the critical condition) occurs on the morphological instability branch. For

comparison, the extreme case V I = 80 p. sec -1 (figure 2.2b) is shown again in figure 2.30).

For GL = 200 K cm -1 and V I = 30 I_ sec -1, figure 2.4 shows the neutral curves (C.-a)

for different rotation rates. Figure 2.4(a) shows the neutral curve for the nonrotating case

(identical to figure 2.3e). If the system is rotated at Qo = 90 rpm, the critical concentration

increases to higher values, as shown in figure 2.4(b). As the rotation rate is increased

further to Qo = 180 rpm, the steady convective branch pinches off, and becomes smaller for

_o = 270 rpm as illustrated in figure 2.4(c-d). Finally, the steady convective branch

disappears, and the critical concentration occurs on the morphological branch for Q0 = 360

rpm. The transition is similar to that shown in figure 2.3.

We present our principal results in terms of stability boundaries in the VI-C*,, plane.

For ease of comparison to the work of Coriell et al. (1980), results are presented in terms of

dimensional variables. With GL fixed at 200 K cm -1, figure 2.5 shows stability boundaries
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for Qo = 0, 100, 200, 300, and 500 rpm. For each value of _o, the stability boundary

consists of some portion of the morphological branch (C*. decreasing with increasing V l) found

by Corieil et al. (their figure 1), joined to a convective branch. The critical value of C.on

the convective branch is an Increasing function of _o at any value of Vz, clearly indicating the

Inhibitory effect of rotation on the onset of buoyancy-driven convection. We note that for

VI -5 I_ sec -1, rotation at _o = 500 rpm Increases by slightly more than two orders of

magnitude relative to the nonrotating case the critical Sn concentration above which the

plane-front solution becomes unstable. We further note that the morphological branch is

unaffected by rotation, whereas as _o increases, the value of V_ at which the onset of

instability shifts from the convective branch to the morphological branch decreases from

about 40 p sec -1 in the nonrotating case to about 27 IZsec -1 for D.o = 500 rpm.

For each value of P-o, we see a local minimum near V] = 1 Iz sec -1, with the minimum

shifting to smaller growth velocities and becoming relatively more shallow as _o increases.

We note that the maximum relative stabilization by rotation occurs near the local minimum,

and that for ,'zo = 500 rpm, the critical bulk concentration of Sn is Increased more than a

hundredfold. Although Corlell et al. (1980) noted a local minimum in the stability boundary

near V_ = 1 p, sec -1 in the nonrotating case for the largest gravitational acceleration

considered, they offered no explanation for its existence. This minimum is a consequence of

the fact that as V I --->0, the concentration gradient Gc = (k-1)psC.V]/(kpLoD) vanishes. As the

temperature gradient is independent of C. and is stabilizing, the critical value of C. must

ultimately increase as V l -_ 0. (Of course, the weight percentage of the solute, C., cannot

exceed 100). As C*. must initially decrease with increasing V1, there must be a local

minimum on the convective branch before C*. can Increase to join up with the morphological

branch of the stability boundary. This nonmonotonic dependence of C*. on V I can be

interpreted in terms of the existence of four critical values of V_ for certain values of C..

(In addition to the three shown in figures 2.5 and 2.6, we note that for sufficiently large VI ,

C',, ultimately increases on the morphological branch (Davis 1990).)
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As discussed for the nonrotating case by Corieli et al. (1980), at each value of Qo the

onset of morphological instability occurs via a short wavelength (large wavenumber)

Instability, while convective Instability sets in via disturbances with relatively longer

wavelengths. In the following section this point is discussed in the context of the mechanism

by which rotation Inhibits the onset of convection.

For GL = 400 K cm -1, figure 2.6 shows stability boundaries (C*. versus V]), analogous to

those for G L = 200 K cm -1. Aside from a slight shift of the stability boundaries to higher

values of C*., the results are qualitatively similar to those for GL = 200 K cm -1. In

particular, the onset of buoyancy-driven convection is suppressed but the morphological

instability is not influenced by rotation, and the critical value of C. passes through a

minimum near V I = 1 IJ.sec -1.

2.6. Discussion

The remarkable stabilization obtainable at low growth rates (more than a hundredfold

increase in the critical value of C,. at V] = 1 p.sec -1 can be achieved by rotating the layer at

500 rpm for the two values of G L considered) is undoubtedly due to the well-known Taylor-

Proudrnan mechanism, described by Chandrasekhar (1961). According to the Taylor-

Proudman theorem, steady motion parallel to the axis of rotation in a uniformly rotating

inviscid fluid is prohibited at any nonzero rotation rate. If this theorem were strictly

applicable to a viscous fluid, the onset of steady convection would be prohibited, since the flow

in convection cells must have a vertical component. Instead, in a viscous fluid, one sees an

inhibition of the onset of steady convection, with the degree of inhibition (expressed here as an

increase in C.) increasing with -Go. That the onset of oscillatory convection is hardly affected

is due to the fact that the Taylor-Proudman theorem applies only to steady flows. It is also not

surprising that the morphological Instability is unaffected by rotation. The morphological

Instability occurs at very short wavelengths, so the motion is almost perpendicular to the
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solidification front (i.e., aligned with the axis of rotation). Hence, the Coriolis acceleration

does not sensibly affect the morphological instability.

For a horizontally unbounded binary fluid layer in which the density depends on

temperature and one composition variable, Pearlstein's linear stability analysis (Pearlstein

1981) shows that Coriolis effects generally inhibit the onset of convection (by the Taylor-

Proudman mechanism). Under some conditions, however, rotation can destabilize the layer,

depending on the values of Pr, Sc, the dimensionless rotation rate (characterized by a Taylor

number), and the dimensionless temperature or solute gradients (characterized by thermal

and solutal Rayleigh numbers). For conditions under which destabilization (on a linear basis)

occurs relative to the nonrotating case, instability sets in via an oscillatory mode, in which the

natural frequency of oscillation of a buoyant fluid element is tuned (by rotation) in such a way

that there is a local minimum in the critical value of Ra T as a function of the dimensionless

rotation rate. This behavior was found (Pearlstein 1981) for Pr and Sc both less than unity,

although there is no apparent reason why such destabilization cannot occur under other

conditions when onset is via an oscillatory mode.

Although Pearlstein (1981) found in the rotating doubly-diffusive case that

for P r <1 <Sc (a condition satisfied in the present case, in which Pr - 0.023 and Sc = 81)

there can exist as many as three critical values of the solute Rayleigh number for certain

values of the Taylor, Prandtl, Schmidt, and thermal Rayleigh numbers, we have found no

evidence of such multivalued stability boundaries in the present calculations. As in the case

investigated earlier (Pearlstein 1981), it is possible that such behavior occurs in relatively

small regions of the parameter space (G L, Vp etc.) and has gone undetected so far. As discussed

in § 2.5, however, figures 2.5 and 2.6 imply that for certain values of C. there exist four

critical values of V I (including the unshown portion of the morphological branch).

Even though the foregoing analysis is restricted to a horizontally unbounded fluid layer,

the work of Homsy & Hudson (1971a) and B0hler & Oertel (1982) suggests that its

predictions will be qualitatively correct for finite aspect ratios (ratio of mold radius to
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height) if the parameter _2o Ro/g (a Froude number, where R o is the mold radius) is

sufficiently small. For the onset of thermal convection in rotating water or mercury layers

heated from below, the excellent quantitative agreement between classical linear stability

analysis for a horizontally unbounded layer (Chandrasekhar 1953; Chandrasekhar & Elbert

1955; Nakagawa & Frenzen 1955) and experimental work for finite aspect ratios (Nakagawa

& Frenzen 1955; Fultz & Nakagawa 1955; Goroff 1960) provides a clear demonstration of

the potential of the Coriolis acceleration to suppress buoyancy-driven convection in a

rotating fluid.

Interpretation of the results of a stability analysis restricted to infinitesimal

disturbances is obviously subject to the caveat that larger disturbances might grow,.even

though sufficiently small disturbances are predicted to decay. Indeed, it is known that for

rotating fluid layers heated from below, the onset of thermal convection sometimes does occur

(Veronis 1959, 1966, 1968) at lower Rayleigh numbers than predicted by linear theory.

However, in that case, accounting for finite (i.e., non-infinitesimal) amplitude disturbances

modifies the quantitative predictions of the theory; the basic qualitative prediction of

stabilization by rotation remains unchanged.

The relatively modest rotation rates required to significantly inhibit the onset of

convection in the Pb-Sn system make the proposed method an Interesting candidate for a

program of laboratory experiments. (We note here that the experimental work of M011er

(1990) and Weber et a/. (1990) focuses on the effect of rotation on the time-dependence of

the supercritical flow, with no information given on the effect of rotation on the suppression

of motion. Furthermore, although these authors have concluded that the Coriolis acceleration

is key to the elimination of striations at high rotation rates, their experimental design

complicates the separation of effects of the Coriolis acceleration from the increased "pseudo-

gravitational" effects associated with the centripetal acceleration.) Experiments might be

conducted using a completely filled cylindrical mold, thermally insulated on the vertical

surface, and mounted axisymmetrically on a rotating horizontal turntable. If the liquid at the
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top of the rotating mold is in contact with a gas or vacuum, it will have a nearly paraboloidal

free surface, on which the elevation above the point on the axis of rotation is

&z = _or2/(2g). Although this configuration is consistent with rigid-body rotation, it also

leads to a nearly paraboloidal solid-melt interface. For high rotation rates or large mold

radius, this will in turn lead to significant radial variations in the solidified alloy. Also,

cooling at the radial boundary leads to a radial temperature gradient, which in turn leads to

significant centrifugal effects. For these reasons, the results of the present analysis cannot

be compared to the experimental work of Kou (1978), Kou et aL (1978), or Sample &

Hellawell (1984), in which strong radial variations in macrosegregation are observed in the

solid. Experiments of the type proposed above were initiated some time ago by Copley

(1976) for the crystallization of ammonium chloride from aqueous solution.

Finally, we note that for many binary systems, plane-front solidification does not occur

at practical growth velocities, and that the morphological instability results in dendritic

solidification. In this case, rotation might also suppress buoyancy-driven convection in the

melt and interdendritic liquid; this possibility is considered for the Pb-Sn system in

Chapter 4.
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CHAPTER 3

Solidification of a Binary

Depends Nonmonotonically

including Coriolis Effects

Liquid

on

3.1. Introduction

In the previous work on binary liquids (e.g., the study of lead-tin alloys by Coriell et al.

1980) solidified by cooling from below (as in Bridgman growth), consideration was

restricted to the case in which the liquid density (p) depended linearly on temperature (T)

and solute mole fraction (C), i.e.,

p(T,C) = Poll - a(T-To) - I_(C-Co) ] (3.1)

where T O and C O are reference values. In general, the vertical variation of density is given by

_ B_T.T_
a_ = _T,)_ +aC_" (3.2)

so that a local density extremum can occur even if the density depends monotonically on each

of the stratifying agencies (as in (3.1)), and the profiles of the stratifying agencies vary

monotonically with the vertical coordinate _. For example, when T increases linearly with

increasing elevation above the liquid-solid interface (an excellent approximation for many

systems; cf. §3.3) and solute is rejected from or preferentially Incorporated into the solid,

the steady one-dimensional temperature and solute profiles near the interface can be

approximated by

and

T(2) = TO + GL 2

C(2)= C.[1+ l_k e-VIZ/DL]

(3.3a)

(3.3b)

for
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where GL > 0 is the liquid-side temperature gradient at the interface, V I is the solidification

rate, DL is the solute diffusion coefficient, and k is the segregation coefficient. We see that

dC/cl_ < 0 for k < 1 (rejection of solute) and dC/d_ • 0 for k • 1 (preferential incorporation

of solute). From (3.2) and (3.3), we have

l_p__ =__GL+_ 1-k e-VI_-/DL (3.4)
Po _2 D E k '

so that if the inequality

_V_C. 1-k >1 (3.5)
aGLD L k

is satisfied, the density will assume a maximum value at

_ I" aGLDL k "i
DEInL V=C.(1,k)j (3.6)vl

in the liquid, notwithstanding the monotonic dependence of p on T and C, and of T and C on _..

The density can also depend nonmonotonically on _ if p(T,C) varies nonmonotonically

with one of the stratifying agencies, say T. Among the binary systems in which density does

not depend monotonically on temperature are many dilute aqueous solutions, for which the

local density maximum is associated with the 3.98°C density maximum of pure water (at one

atmosphere), and dilute solutions of cadmium telluride in mercury telluride. As noted in

§§3.5 and 3.6, the density can also have more than one local extremum, even though the

temperature and solute distributions depend monotonically on _..

Although fluid layers having local density maxima have been the subjects of previous

studies of the onset of buoyancy-driven convection in water (Veronis 1963; Merker et al.

1979; Normand & Azouni 1992), directional solidification of a binary liquid differs in

several important ways. First, one must account for the deformable moving interface.

Second, in a fluid layer with a linear vertical temperature gradient, nonmonotonic dependence

of density on temperature corresponds to a local density maximum in a single-component

fluid, whereas (3.2) shows that in the binary case with density depending on temperature and
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composition, the elevation where o_p/o_T= 0 generally does not correspond to a local density

maximum. Moreover, it is well-known that in a binary fluid, onset of buoyancy.driven

convection depends on the Individual stratifying agencies (temperature and solute in the

present case), rather than on the density gradient. (Turner 1973, Chapter 8). Although this

point has been recognized in analyses of convection in dilute aqueous solutions of NaCI (Foster

1972; Gebhart & Mollendorf 1978; Qureshi & Gebhart 1986), the stability of plane-front

solidification of a liquid with a nonmonotonic dependence of density on temperature has not

been previously considered.

The effects _f rotation on convective and morphological instabilities have been revlewed

by C)ztekin & Pearlstein (1992) and in Chapter 2 herein. In the linear stablity analysis for

Pb-Sn alloys, the results of Chapter 2 show that the Coriolis acceleration suppresses

buoyancy-driven convection in the melt, and plane-front solidification becomes stable in a

larger range of solidification rate and concentration for any given temperature gradient.

Here, we investigate the effect of rotation on the onset of instability for Hgl.xCdxTe

pseudobinary alloys.

We use a linear stability analysis to study the onset of instability In binary liquids which

exhibit a density maximum in the Interior, and solidify with a nominally planar interface.

We also assess the Potential of uniform rotation to suppress the onset of buoyancy-driven

convection. We consider the stability of plane-front solidification of the pseudobinary alloy

mercury cadmium telluride (Hgl.xCdxTe , where x is the bulk mole fraction of CdTe, herein

denoted by C.) from the melt. The growth of Hgl.xCdxTe crystals is of considerable practical

interest because of the uses this material finds in the fabrication of infrared detectors and

other electro-optical devices. For these applications, crystal size and defect density are

critical, with the goal being to produce large single crystals with very high degrees of

uniformity and very low densities of macrosegregation defects and other Imperfections. This

has led to a number of experimental (Galazka et a/. 1981; Capper et al. 1986) and theoretical

(Bourret et al. 1985; Kim & Brown 1989; Apanovich & Ljumkis 1991) studies of
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solidificationof Hgl.xCdxTe from the melt. For a moredetailed discussion,the reader is

referred to the reviewsby Micklethwaite(1981) and Capper (1989).

This Chapteris organizedas follows. In §3.2, we present the governing equations and an

appropriate nondimensionalization. The one-dimensional basic state and linear disturbance

equations are given in §3.3. The numerical solution technique is described in §3.4. Results

for the Hgl.xCdxTe pseudobinary system are presented in §3.5a and §3.5b for the nonrotating

and rotating cases, respectively, followed in §3.6 by a general discussion of the solidification

of binary liquids in which the density depends nonmonotonically on temperature.

3.2. Governing Equations and Formulation

W

g

n

II

m

IB

3.2.1. Equation of State

For the solidification of mercury cadmium telluride, we have used an equation of state

based on the experimental data of Chandra & Holland (1983) and Mokrovskii & Re§el

(1952). Since the density of pure HgTe liquid does not depend monotonically on temperature,

the density of Hgl.xCdxTe will also depend nonmonotonically on temperature for sufficiently

small CdTe mole fractions. The variation of liquid density with temperature and composition

is represented by bivariate polynomials of the form

3 4-i

PL(T,C) =__, _ _ bijCi(T-IO3OK) j for T<Tmax(C)
IIO j=O

(3.7a)

and

3 1

pL(T,C) =,___' _ dljCI(T-1030K) l for T>Tmax(C) (3.7b)
i=o j=o

II

i

w

i

U

J

Where

3

Tmax(C) = _ ri C I
I=0

(3.8)
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is a polynomial fit to the largest temperature (as a function of C) for which density data are

available in the literature. The linear dependence of density on temperature (3.7b) for

T>Tmax(C) is chosen to match PL and _pL/_T at Tmax. Details are given in Appendix B.

3.2.2. Dimensionless Governing Equations

We adopt the model of directional solidification used by Coriell et al. (1980), in which

the thermophysical properties in the liquid are taken to be constant, except for the density.

The spatial and temporal variation of liquid density according to (3.7a,b) will be accounted

for in the buoyancy term and neglected everywhere else.

We scale the velocity, time, length, pressure, solute mole fraction, and the difference

between the local and interface temperatures with V l, H/V], H, PLoVVI/H, C., and GLH,

respectively, where H = DL/V I is the characteristic length associated with the solute gradient

at the interface, Vx is the nominal solidification rate (with dimensions of velocity), KL is the

thermal diffusivtty of the liquid, D L is the binary diffusivity of CdTe in the liquid, v is the

kinematic viscosity, C. is the bulk value of the solute mole fraction, PLO iS the liquid density

at the bulk value of the solute mole fraction and the corresponding liquidus temperature, and

G L is the nominal liquid-side temperature gradient at the interface. The dimensionless

equations governing the fluid motion are the Oberbeck-Boussinesq equations in a reference

frame translating with the nominally steady velocity (izVi) of the moving interface

V.u=0, (3.9a)

1 /au, ) =-_'_" u " VU+ 2Q* x UL+ Q* x (Q* x r) VP- PL(TL'CI') iz + V2 u , (3.9b)
PLo73Sc

o_T . VTL) = V2TL,Le (_=+u

_'_+ U ° VC L = V2CL,

(3.9c)

(3.9d)
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where the dimensionless variables u, p, T L, and C L are, respectively, velocity, pressure,

temperature, and solute mole fraction in the liquid, Sc = riD E is the Schmidt number,

Le = DL/K L is the Lewis number, 1'- VI/(gDL) 1/3 is the dimensionless solidification rate, g

is the magnitude of the gravitational acceleration, and _*= Q H/Vx-Q (DLIg2)I/31"_ 2 is the

dimensionless angular velocity. We note that in (3.9a-d), the velocity is referred to the

moving frame, unlike the mixed formulations employed by Coriell et al. (1980) and

subseqent authors in which the velocity in the laboratory frame appears in equations written

in the moving frame.

The energy equation in the solid is

/'__._ _Ts_ = _ V2Ts ' (3.10)
Le_ _)%- _z/

where T s is the dimensionless temperature in the solid, K°= KS/KL iS the thermal diffusivity

ratio, and _¢s is the thermal diffusivity of the solid.

Dimensionless boundary conditions at the interface are derived from conservation of

mass

__Vs.n-p°lz • n=u. n,
(3.11a)

and the no-slip assumption

(u + iz)" t=0,
(3.11b)

where n and t are unit vectors normal and tangential to the interface, respectively, V s is the

local interface velocity scaled by V I, p" = PS/PEo is the density ratio, Ps is the (constant) solid

density, and ¢ = p°-1 is the fractional shrinkage. The dimensionless energy balance at the

interface is
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L" (V s + iz) • n = -k_. _'L" n + A V3"S • n,F
(3.11c)
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where the right-hand side corresponds to the difference between the normal components of

the heat flux vectors in the liquid and solid, and the left-hand side corresponds to the product

of the latent heat (L° - L(C.)/Lo, where L(C.) is the latent heat per unit volume and

Lo-L(0)) and the normal component of the solidification velocity. Here

]"-GLkLo/[Lo(gDL) 1/3] is the dimensionless liquid-side temperature gradient at the

interface, A = ks(C.)/kLo is the thermal conductivity ratio, kl_= kL(C.)/kL0 , kLo is the

thermal conductivity of pure HgTe liquid at its melting temperature, and kL(C.) and ks(C.)

are the thermal conductivities of the liquid and solid, respectively. The dimensionless solute

balance at the interface is

p'(C L - C s) (V s + iz) • n = - vC L • n, (3.11d)

where C s is the solute mole fraction in the solid. We also require the temperature to be

continuous

TL = Ts, (3.1 1e)

across the interface, the liquid and solid solute mole fractions at the interface to be related

according to the binary phase diagram

Cs =k CL, (3.1 I f)

where k is the segregation coefficient, and the temperature and solute mole fraction on the

liquid side of the interface to be related by

]" = ml./CL_ 11_ _y"y (3.11g)

where me. = mLC.kLo/(DLLo) , _°= TMkLo_gl/3/(DS/3Lo), TM is the melting temperature of

HgTe, mL is the slope of the liquidus, R 1 and R2 are the principal radii of curvature of the

interface, and _ is the capillary coefficient. The temperature- and composition-dependence
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of most of the thermophysical properties (other than PL) is given for Hgl.xCdxTe in Appendix

C. For the remaining properties, values measured at selected temperatures and compositions

are taken as constant over the entire range.

3.3. Basic State and Linear Disturbance Equations

In the reference frame described in §3.2.2, the steady one-dimensional basic state

specified by

with

Vs = 0, (3.12a)

= - p* iz,

TL = 1 - xp(- z)].

1+ exp(-¢ z),

(3.12b)

(3.12c)

(3.12d)

in the liquid, and

- Le
TS,, _:'(kE+ L'y/r) [1- exp(-?-z)] , (3.12e)

ALe

!

in the solid is, with one exception, the same as that used by Coriell et al. (1980). Here Vs,

U, TL, CL, and T s are, respectively, the dimensionless basic state interface velocity, velocity,

temperature, and solute distributions in the liquid, and temperature distribution in the solid,

and _ = (1-k)/k. Our basic state differs from that of Coriell et al. in that V s = 0 and u is not

proportional to the shrinkage E, because in our formulation the interface and fluid velocities

are referred to the same (moving) inertial reference frame. Note that for p*_= 1 and

Le = O(10-3), (3.12c) can be approximated by a linear function of z (e.g., (3.3a)) from the

interface out to fairly large values of z.

To determine the conditions under which a disturbance grows, we write the interface

velocity,liquidvelocity,temperature, solutemole fraction,and pressure as

=

g

=_

J

i

z

ml

B

B
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Vs(x,y,'O =0 + Vs(x,y,t ) , (3.13a)

F_

I¢I

m

w

--_=,

m

v

u(x,y,z,_) = "_+ u'(x,y,z,-O ,

¥,( •TL(X,y,z,_) = z) + TL(X,y,z,,¢ ) ,

CL(X,y,z,_) = CL.(z).* C_.(x,y,z,_) ,

(3.13b)

(3.13c)

(3.13d)

p(x,y,z,.¢) = _(z) + p'(x,y,z,t) ,

and the solid temperature as

(3.13e)

Ts(x'Y'Z"=) =¥s (z)+ Ts(x,Y,Z,_) , (3.13f)

where Vs, u, TL, CL, and p" are, respectively, disturbances to the dimensionless interface

velocity, liquid velocity, temperature, solute distribution, and pressure, T s is the

dimensionless temperature disturbance in the solid, and p is the dimensionless basic state

pressure distribution. Substituting (3.13a-f) into the governing equations and boundary

conditions, subtracting the basic state equations, and retaining only linear terms, we obtain

dimensionless disturbance equations and boundary conditions. The equations governing small

disturbances in the liquid are

Vo u'=O,

1 (_u___._+_o.xu.)=_,p.__ ,L,z.Fc_.,
dz _,"Sc _Sc _" z + v2u',

-_-at O"_- -P" w" exp(- O"z) = V2CL,

where w" is the dimensionless z-component of the disturbance velocity.

FT = fTLoDL/(PLokLo)' FC " C-fC/PLO, fT "=°_PL(_L,(_L)/o_T, fc " °_PL(T'L,CL)/o_C, .(2

(3.14a)

(3.14b)

(3.14c)

(3.14d)

Here, we define
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and P,_ = _o(DL/g2)l/3//2 is the dimensionless rotation rate. We note that although the left-

hand s!des of the disturbance equations are similar to the corresponding left-hand sides of the

disturbance equations of Coriell eta/. and others, the second term in each of (3.14b-d) arises

from a convective term of the type u • V(), whereas in previous work these terms arose

from the mixed nature of the formulation.

The disturbance energy equation in the solid is

(3.15)

Taking the curl of (3.14b) and the dot product of the result with iz, we obtain an equation

1__( _ p.__ 2_ ° =Sc
(3.16a)

for the z-component of the vorticity, (oL. Taking the curl of (3.14b) twice and the dot

product of the result with iz, we obtain an equation

*o30_"

for the z-component of the velocity, where V 2 = _)2/_x2 + _)2/_y2 is the horizontal portion of

the Laplacian operator.

The disturbance boundary conditions iinearized about the nominal interface position

(z = O) are
¢3_(x,y,'¢) (3.17a)

u'(x,y,O,'c) = _ ax '

v'(x,y,O,'_) = z 8_(x,y,¢) (3.1 7b)
o_y '

w'(x,y,O,'¢) = - s _Tl(X,y,'c)o_1;
(3.17c)

o_W'(X,y,O,'_) . - _ V2_ (x,y,'¢), (3.1 7d)
az
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.7_L° all(X,y,,_) k_aTl.(x,y,O,_)"
r a_ =- az

+

(az +Le k_p" -_-?-J-- Ti(x,y,t), (3.17e)

Bkp ° 11(x,y,'c) + k CL(X,y,0,¢ ) + a_(x,y,t) = 1 aCL(X,y 0,_)
at F.p- az '

• I (kl_+ L• r_) 11(x,y,_)TL(X,y,0,'0 + 'q(x,y,'0 = Ts(x,y,0,'¢) + _.

(3.17f)

(3.17g)

r[TL(X y,0,_) +Tl(x,y,_)] = mC[C'L(x,y 0,_) p'z _l(x,y,_)]. _'_,v2_(x,y,_), (3.17h)

where Vs(x,y,, 0 = iz aT1/at is the linearization of the disturbance interface velocity, and 11 is

the local dimensionless Interface deflection.

We write the horizontal and temporal dependence of the dimensionless disturbance

quantities as exp(o.z + iaxx + iayy), where ax and ay are the x- and y-components of the

horizontal wavevector, and a is the temporal eigenvalue. Substitution into (3.14c,d),

(3.15), and (3.16) yields

1SC[ or(D2 - a2)w - P'D(D2- a2)w + 2_° De)] =

- _T a2 e, - Fc a2
_4Sc =- 1,3SC X.L* (D2-a2)2W (3.18a)

1 (G e) - p° De) + 2¢2o DW) = (D 2 - a2)e) , (3.18b)

Le ((r e L - p* DeE) = (D 2 - a2)eL _ Le W exp(- p" Le z) ,

a X,L - p* I_ L = (D 2- a2)X;L + _=p* W exp(- p* z)

(3.18c)

(3.18d)

in the liquid, and

Le (a e s - Des) = K* (D2- a2)es (3.19)
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in the solid;the boundaryconditions(3.17a-h)at the interfacebecome
m

II/

W(0) = - e o 13, (3.20a) g

DW(0) = e a2 j3, (3.20b)

¢o(o) = o, (3.20c)

• ,. = (F o p - kl_ DeL(0) + ^ Des(0) + Le k_.po _ k_¢._
(3.20d)

1 DXL(0) '
(a+ kp*)13 = - k XL(O)-.-_

eL(0) + _ = es(°) +Z kl_ + L* 13,

(3.20e)

(3.20f)

_r [eL(O) + _] = m_.[XL(O)- p'_-1_]- 1"_ a2 13, (3.20g)

where W, co, _,L, and e L are, respectively, the amplitudes of the disturbances to the vertical

velocity, vertical vorticity, solute distribution, and temperature in the liquid, e s is the

amplitude of the disturbance temperature in the solid, and I_ (a constant) is the amplitude of

the disturbed interface position. For the boundary conditions far from the interface, we have

followed Coriell et al. (1980) and set all disturbances to zero

W = DW = co= _'L = eL = 0 as z --, =, (3.21 a-e)

e s = 0 as z --> - oo.
(3.21f)

3.4. Numerical Solution

Our objective is to find conditions for which infinitesimally small disturbances decay

(Re(a) < 0) for all but a finite number of critical wavenumbers (typically one), and are

neutral (Re(G) = 0) for the critical wavenumber(s). These conditions separate basic states

that are linearly stable from those that are not.
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In the previous section, we formulated an eigenvalue problem for systems of ordinary

differential equations on two semi-infinite Intervals (in the liquid and solid), coupled by

boundary conditions at the deformable interface. For convenience, we follow Coriell et al.

(1980) and solve the problem on a finite computational domain [-h,h]. With regard to the

far-field boundary conditions at z = :1:,,=,we set all disturbances to zero at z = h

W = DW = o) = _L = OL = 0 at z = h, (3.22a-e)

in the liquid and at z =-h

u

e s =0 at z=-h. (3.22f)

in the solid, where we have taken h to be at least 10, depending on the vertical structure of

the basic state temperature and solute fields given by (3.12c,d). (For steady onset, we have

checked a number of our results using more accurate asymptotic boundary conditions applied

at z = + h derived following Keller's (1976) procedure, and have found excellent agreement

between eigenvalues computed using the two sets of boundary conditions.) Since we use

Chebyshev polynomials in our numerical solution, we scale the vertical coordinate in the

liquid and solid regions by z2 = ( 2 z- h)/h and z 1 = ( 2 z + h)/h, respectively, so that each

region lies between -1 and +1. The resulting system is solved using a spectral Galerkln

technique developed by Zebib (1987).

We approximate the highest derivatives of the amplitude of the disturbance velocity,

solute distribution, and temperature in the liquid, and temperature in the solid, by truncated

sums of Chebyshev polynomials of the form

j

- w(4)(z2) = ,T_,KjTj(z2),
po

j

(,o(2)(Z2) = '_L,MjTj(z2) ,

B

(3.23a)

(3.23b)
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X(L2)(Z2) = ,___,PjTj(z2),

j=0

(3.23c)

eL2)(z2)=  C Tl(z2), (3.23d)
j=o

O_2)(Zl) = _z_ZjTj(Zl),

j=0

(3.23e)

where Tj is the j-th Chebyshev polynomial and the coefficients Kj, Mj, Pj, Qj, and Zj are to be

found. Representations of lower order derivatives can be found by integrating (3.23a-e) and

using standard properties of Chebyshev polynomials. The procedure described by Zebib

(1987) reduces the problem to a matrix eigenvalue problem

A s + o B s = 0, (3.24)

where c is the temporal eigenvalue, and the elements of the square matrices A and B depend on

the square of the horizontal wavenumber a2 = _ + a2, the bulk mole fraction C., and the other

dimensionless parameters. A more detailed description is given in Appendix A.

In what follows, we characterize the stability of the nominally plane-front solution in

terms of the bulk mole fraction C. and dimensionless solidification rate _,, with all other

parameters taken as fixed. As shown in §3.5, there is a critical value _'c such that for "f• _'c,

there is no range of stable C. (i.e., for any C. a disturbance at some wavenumber will grow),

while for _, < "/c, disturbances of every wavenumber decay for some range of the bulk mole

fraction. (See figure 3.1 for a schematic representation.) The upper and lower limits of this

range are denoted by C*. and C*.*, respectively, and depend on _,. These critical values of C..

correspond to the extrema on the morphological and convective neutral curves (C. versus a)

separating those combinations of C. and a for which all temporal eigenvalues a lie in the left

half-plane (LHP) from those for which at least one eigenvalue lies in the right half-plane, in

turn corresponding to stable and unstable basic states, respectively.
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In order to determine the bulk mole fractions on the morphological and convective

neutral curves separating stable and unstable basic states for an arbitrarily chosen

wavenumber a, we first compute all eigenvalues a of (3.24) at each of N values of C. (C(.n), 1

< n < N) in the range [C rain , 0.2], where the lower bound is typically 10 -4 and the upper

bound is determined by the largest bulk mole fraction of CdTe for which we have data for the

equation of state. We then attempt to determine a range of C. for which all temporal

eigenvalues are in the LHP. If one of the original values of C. selected is stable (i.e., all

temporal eigenvalues lie in the LHP), we then determine two intervals such that as C.

increases, in one a transition from Instability to stability occurs, and in the other a

transition from stability to Instability occurs. Through these two intervals pass the

convective and morphological neutral curves, respectively, as discussed in §5. If none of the

original N values of C. is stable, we choose the value (say, CU.)) for which the most unstable

temporal eigenvalue has the smallest real part, and subdivide the interval [C(.j'l), C(.j*l)] until

we either find a stable value of C. (at which juncture we proceed to Isolate the two intervals

described above), or abandon the search when the real part of the least stable temporal

eigenvalue and the difference between consecutive values of C. supports the expectation that

all intermediate values of C. are unstable. Having found the intervals of C. in which the

transitions occur, we then compute the bulk mole fractions on the convective and

morphological neutral curves using a bisection method.

To compute the critical bulk mole fraction C*. (i.e., the minimum on the morphological

neutral curve), we arbitrarily choose a wavenumber and compute the corresponding C. on

the morphological neutral curve using the procedure described above. We then fix C. at the

value computed in the previous step, and compute the eigenvalues a for a discrete set of

wavenumbers in a chosen range. We next select the wavenumber from among this set at

which the a with largest real part was obtained. If this wavenumber is at an endpoint of the

chosen range, we extend the range until the wavenumber corresponding to the largest Re(a) is

inside the range. We then select this wavenumber and determine the corresponding C.. on the
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neutral curve. We continue this process until the relative change in C. is less than 10 's. We

comput e C'.," following the same procedure. Spectral and domain convergence results are

shown in Tables 1 and 2.

3.5. Results

8

IB

IB

3.5. 1. Nonrotating case

We begin by considering the basic state profiles of temperature, solute distribution, and

density in the liquid. Equation (3.12c) shows that (for p'--1) the dimensionless basic state

temperature distribution decays exponentially away from the interface on a lengthscale 1/Le,

where 4 x 10.-3 < Le < 10 -2 for Hgl.xCdxTe, and so is essentially linear on the scale of the basic

state concentration profile (3.12d). As discussed in §3.1, the liquid density of Hgl.xCdxTe

does not depend monotonically on temperature for sufficiently small C. Hence, qualitatively

different vertical density stratifications are obtained for fixed values of y and r, depending on

C.. The nature of the density stratification and the thermal and solutal contributions thereto

have profound consequences for the onset of convection.

For y = 1.32 x 10 -4 and 1"= 8.2 x 10 -4 (corresponding to the dimensional solidification

rate and temperature gradient Vx = 0.5 IJJsec and G L = 25 K/cm, respectively), figure 3.2(a)

shows basic state density profiles for different values of C,. For C, = 0.1, the density varies

monotonically with elevation in the liquid. For C. - 0.045, the density variation is still

monotonic, but there is a considerable reduction in the magnitude of the density gradient near

the interface. For smaller values of C. (0.025 and 0.01), the density assumes a local

maximum in the liquid. Figure 3.2(b) shows the vertical density stratifications for different

values of C. for y = 2.64 x 10-4 and r = 8.2 x 10-4. The basic state density profiles are

generally similar to those for -f = 1.32 x 10 -4 and r= 8.2 x 10 -4, being monotonic for larger

values of C., and nonmonotonic for smaller values. We note, however, that for C, = 0.025,

the basic state density stratificat_n has both a local minimum and a local maximum. (In

figure 3.2, the approximate coincidence of the pL/PLO curves is only apparent, as can be seen
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from figure 3.3, in which for 1' = 2.64 x 10.-4 and F = 8.2 x 10 -4, the derivative of pL/PL0

with respect to C. vanishes at a slightly different z near 1.7 for each value of C. shown.)

The solutions of (3.18)-(3.22) depend on sixteen dimensionless parameters, as defined

in §§3.2 and 3.3. To determine the stability of a basic state with a nominally planar

interface, numerical values of these parameters need to be specified. (The approximate

solutions on the finite interval also depend on h.) It is therefore not feasible to numerically

explore the effects of more than a few combinations of these parameters on the onset of

instability. In this work, we present neutral curves (C. versus a) for fixed values of 1' and

F, amplitudes of the disturbances as a function of the vertical coordinate for selected values of

C.., 1', and F, and stability boundaries (critical values of the bulk mole fraction C. as a

function of 1') for selected values of r'. The thermophysical properties are taken as constants,

with most being evaluated at C. using the functional forms shown in Appendices B and C at the

melting temperature for liquid properties, and at the freezing temperature for solid

properties. We have used g = 9.80 m/sec 2.

Figure 3.4(a-c) shows neutral curves for F = 1.64 x 10 -3 (G L = 50 K/cm) and three

values of 1'. The solid neutral curve at the top of each figure corresponds to morphological

instability. The minimum on that curve (denoted by C*..) determines one point on the stability

boundary. The dashed neutral curve in each figure corresponds to an oscillatory buoyancy-

driven convective instability mode, Just above that curve, all disturbance decay, whereas

just below, oscillatory disturbances grow. The maximum on that curve determines another

point (C*..°) on the stability boundary. In the unstable region below the oscillatory convective

neutral curve, solid neutral curves correspond to steady convective modes. Since we have

found no liquid density data for C. > 0.2, computations were not performed for bulk mole

fractions in excess of 0.2 (above the dashed-dot line in each of figures 3.4(a-c).

Figure 3.4(a) shows the neutral curves for 1' = 2.64 x 10 -4. The buoyancy-driven

instability modes occur in a wavenumber range of approximately 0.01 to 10. The extrema of

the morphological and oscillatory convective neutral curves occur at C*., = 0.0989 and

G_-?__
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C'." = 0.0369, respectively. For C*..* < C. < C*., Infinitesimal disturbances decay for all

wavenumbers. Note that the critical bulk mole fraction C*. (below which there Is no

morphological instability) occurs at a larger wavenumber than C*.* (above which there Is no

convective instability). When '/is Increased to 5.28 x 10 .-4 (V x = 2 idsec), C'. decreases to

0.0464 and C*.* Increases to 0.042, so that the range of C. in which disturbances decay for all

wavenumbers is smaller, as shown in figure 3.4(b). The wavenumber range in which

buoyancy-driven convection occurs is shifted slightly to the left. For 1' = 7.92 x 10 -4

(V I - 3 _sec), the extremum on the morphological curve lies below the extremum on the

convective curve, as shown in figure 3.4(c), and there is no range of C- for which

disturbances decay for all wavenumbers. For l" - 1.64 x 10 -3, we find a critical value of the

dimensionless solidification rate Yc = 5.61 x 10 -4 (Vx - 2.12 i_/sec) above which plane-

front solidification is unstable for all values of C,.

The basic state density, its gradient and the thermal and solutal contributions thereto,

and the amplitudes of disturbances to temperature, solute distribution, and vertical velocity,

are shown as functions of z in figure 3.5(a-d) for 1 .. 2.64 x 10-4, r'- 1.64 x 10 -3, and four

values of C. at a - 2.85. Figures 3.5a(i), 3.5b(i), 3.5c(i), and 3.5d(i) show the basic state

density profiles for increasing values of C,. We note that below C, - 0.035, the density

depends nonmonotonically on z. We point out that for the linear equation of state (3.1), the

stabilizing or destabilizing character of the thermal and solutal stratifications can be

determined by inspection of the basic state temperature and concentration profiles. For more

complicated equations of state, it is necessary to individually examine the two terms on the

right-hand side of (3.2). Thus, in figures 3.Sa(ii), 3.5b(ii), 3.5c(ii), and 3.5d(ii), the

solid, dashed, and dotted curves are the dimensionless basic state density gradient, and

contributions to it from the solute and temperature gradients, respectively. Note that the

solute gradient is stabilizing [(apL/aC)(aCL/aZ) < O] throughout the liquid layer for all

values of the bulk mole fraction C,. However, the temperature gradient is destabilizing

[(O_pL/o_T)(_TL/o_z) > O] in a sublayer adjacent to the liquid-solid interface, and stabilizing
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[(apL/aT)(aTL/az) < o] above this sublayer, as shown In figures 3.5a(ii), 3.Sb(ii),

3.5c(ii), and 3.5d(ii). As C, Increases, the height of this sublayer decreases, the magnitude

of the destabilizing thermal contribution (apL/aT)(aTL/az) to the density gradient decreases,

and the magnitude of the stabilizing solute contribution (apL/ac)(acL/az) Increases.

Figures 3.Sa(iii-v), 3.Sb(iii-v), 3.5c(iii-v), and 3.Sd(iii-v) show the z-dependence

of the real and Imaginary parts (denoted by solid and dotted curves respectively) of the

disturbances to the temperature, solute distribution, and vertical velocity associated with the

most unstable oscillatory convective Instability mode for different values of C.. For

C,,. = 0.01 (a value that for a = 2.85 lies well below the oscillatory neutral curve in figure

3.4a), figure 3.5a(i) shows that the basic state density profile density assumes a maximum

near z = 2.7, and that between the liquid-solid interface and this maximum, the liquid layer

is hydrostatically unstable. Also, in this lower part of the liquid the temperature and solute

gradients are destabilizing and stabilizing, respectively. As is clearly seen in figure

3.5a(iii-v), the disturbances are confined largely within the sublayer where the

temperature gradient is destabilizing, although they penetrate weakly into the liquid above

the density maximum, in which both the temperature and solute gradients are stabilizing.

For C, - 0.035 and 0.0369 figures 3.5b(i) and 3.5c(i) show that although there is no

region in which the overall density gradient ts hydrostatically unstable, there is a sublayer

adjacent to the interface in which the temperature gradient is destabilizing. The disturbances

associated with the oscillatory mode of convection are confined to this sublayer, as shown in

figures 3.5b(iii-v) and 3.Sc(iii-v). In this sublayer the temperature gradient is

destabilizing and the solute gradient is stabilizing. As discussed in §3.6, these conditions in

the sublayer thus correspond to the diffusive regime of doubly-diffusive convection, with

oscillatory onset of buoyancy-driven convection. The vertical structure of the disturbances

is very similar to that shown in figure 3.5a(iii-v). In both cases, the disturbances are

confined largely within a sublayer in which the thermal stratification is destabilizing, and

penetrate weakly into the liquid above the sublayer. The disturbances for C. = 0.01,
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however,show more structure in the sublayerthan those for C, - 0.035 or 0.0369. This is

because the effect of the destabilizing temperature gradient is stronger than for C. - 0.035

and 0.0369, as discussed above. For C. = 0.07, however, the structure of the eigenfunctions

is completely different, as shown in figure 3.5d(iii-v). In this case, the eigenfunctions are

associated with the least stable morphological instability mode. Although there still exists a

small sublayer in which the temperature gradient is destabilizing, the disturbances are not

confined to that region. The disturbances decay strongly with Increasing z.

We present our principal results in terms of stability boundaries in the _,-C, plane for

four values of F in figure 3.6(a-d). The stability boundary consists of some portion of the

morphological branch joined to a convective branch. The dashed and solid curves In each

figure correspond to minima on the morphological neutral curve (C') and maxima on the

neutral curve associated with buoyancy-driven convection (C*.*), respectively. Figure

3.6(a) shows the stability boundary for F - 8.2 x 10 -4. Above the morphological branch,

disturbances grow in some wavenumber range and the plane-front solution is unstable.

Similarly, disturbances grow below the convective branch for some range of a. On the other

hand, below the morphological branch and above the convective branch, disturbances of all

wavenumbers decay and plane-front solidification is stable. Beyond the critical solidification

rate % = 2.70 x 10 -4 (VI = 1.02 i_/sec) at which the convective and morphological branches

intersect, there is no stable range of bulk mole fraction C.. For F = 1.64 x 10 -3, figure

3.6(b) shows the stable region in the I-C, plane analogous to that for F = 8.2 x 10 -4. The

morphological branch has shifted to the right and the convective branch has shifted slightly

downward. Their intersection occurs at a higher _, ('y¢= 5.61 x 10 -4, V I = 2.12 i_/sec), and

the stable region is larger. Increasing F still more leads to further enlargement of the stable

region and larger values of %, as shown in figures 3.6(c) and 3.6(d) for F = 3.28 x 10 -s and

6.56 x 10 -s (G L = 100 and 200 K/cm), respectively.
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3.5.2. Rotating case

For r = 1.64 x 10 -3 (GL - 50 K/cm), figure 3.7 shows stability boundaries for _Qo= 0,

25, 50, and 100 rpm. Above the morphological branch, disturbances grow for some range of

wavenumber a and plane-front solidification is unstable. Similarly, below the convective

branch appropriate to each rotation rate shown, disturbances grow for some range of a.

However, between the morphological branch and the convective branch associated with each

rotation rate (i.e., for C*,,* < C. < C'.), disturbances decay for all wavenumbers and plane-

front solidification is stable. Note that the morphological branch is unaffected by rotation,

whereas as _o increases, the convective branch is shifted downward. The critical CdTe bulk

mole fraction C*,* on the convective branch is a decreasing function of P,.oat any dimensionless

solidification rate, clearly indicating the inhibitory effect of rotation on the onset of

buoyancy-driven convection. Beyond the critical solidification rate ('denoted by %) at which

the convective and morphological branches intersect, there is no stable range of CdTe bulk

mole fraction C,. Thus, plane-front solidification is unstable at all CdTe bulk mole fractions

for sufficiently high solidification rates. The critical solidification rate ¥c at which the

morphological and convective branches intersect occurs at higher ¥ with increasing rotation

rate. The critical value of % is increased by more than a factor of ten at .'30 ,, 100 rpm

refative to the nonrotating case. We also note that the convective branch has a relatively

shallow local minimum near ¥ = 2.64 x 10 -4, the location of which is only weakly dependent

on -Qo. Thus, for a given rotation rate, operation at the solidification rate corresponding to

this local minimum allows plane-front solidification to be stably conducted at the lowest

value of C..

For r = 8.2 x 10-4 (G L - 25 K/cm) and _o = 0 and 100 rpm, figure 3.8 shows stability

boundaries in the ¥-C. plane analogous to those for r = 1.64 x 10 -3. As expected on the basis

of the results of Coriell et al. (1980) for Pb-Sn without rotation, the morphological branch

is shifted to the left, reducing the range of solidification rates and bulk mole fractions for
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whichplane-frontsolidificationis stable. On the otherhand,the convectivebranchis shifted

downwardsrelativeto the r" = 1.64 x 10 -3 case, corresponding to an increase in the range of

stable operating conditions. We note that decreasing the temperature gradient has very little

effect on the onset of convection in a nonrotating layer, but reduces the range of stable CdTe

bulk mole fractions by more than twofold for a layer rotating at 100 rpm. The critical

solidification rate l'c is more than a factor of five higher at Do - 100 rpm than in the

nonrotating case, although the stabilization is less than the factor of ten predicted at
, , . = ....

F= 1.64 x 10 -3. Although the reduction in I" has very little effect on the critical value of l' at

which the morphological and convective stability boundaries intersect in the nonrotating case,

for Qo = 100 rpm the critical value of l' decreases by a factor of three when the temperature

gradient is reduced.

As discussed for the Pb-Sn case (Chapter 2), at each value of k'lo the onset of

morphological instability occurs via a short wavelength (large wavenumber) Instability,

while convective instability sets in via disturbances with relatively longer wavelengths. In

the following section this point is discussed in the context of the mechanism by which rotation

inhibits the onset of convection.

3.6. Discusslon

The qualitative differences between the neutral curves and stability boundaries presented

in §3.5 and those characteristic of the normal case in which density varies linearly with

temperature and solute mole fraction (e.g., the Pb-Sn results of Chapter 2; cf. Coriell et al.

1980, C)ztekin & Pearistein 1992) lead us to consider how the equation of state affects or

alters the mechanism by which the onset of motion occurs during directional solidification of

a binary liquid cooled from below.

We begin by noting that the mechanism responsible for the morphological instability is

insensitive to the net density stratification in the liquid, and is insensitive to variations of

temperature and composition outside a relatively thin layer adjacent to the interface. This is
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evident from a comparison of the neutral curves and stability boundaries for the present case

to those for Pb-Sn.

On the other hand, the onset of buoyancy-driven convection depends strongly on the

nature of the stabilizing or destabilizing temperature and solute gradients in the liquid, as

well as on the diffusivities of the stratifying agencies (Stern 1960; Baines & Gill 1969). As

discussed in §3.1, the density of a binary liquid solidified by cooling from below can depend

nonmonotonically on the vertical coordinate even if the density depends monotonically on

temperature and composition. For example, if the equation of state is of the form (3.1) and

> 0, .8 > 0, and k < 1 (as for Pb-Sn), then (3.5) provides a necessary criterion for the one-

dimensional basic state to have a density maximum (3.6) within the liquid. However, for any

system (e.g., Pb-Sn) characterized by the linear equation of state (3.1), even if the density

has a maximum in the liquid, the temperature and composition distributions (3.3a) and

(3.3b) will be stabilizing and destabilizing, respectively. Following the standard "parcel"

argument for a linearly stratified doubly-diffusive fluid (Turner 1973, page 251), we note

that if a fluid element is displaced downward, it will lose its excess heat more rapidly than its

composition will adjust to the relatively solute-enriched surroundings, because the thermal

diffusivity is much larger than the solute diffusivity. Hence, the displaced parcel will be

dilute relative to the surroundings, and if 13> 0 and the resulting buoyancy force is sufficient

to maintain the downward motion, the one-dimensional basic state will be unstable. In the

context of doubly-diffusive flows, this configuration is in the "fingering" regime, and the

onset of convection is said to be "steady" or "monotonic'.

For binary liquids such as Hgl.xCdxTe, for which the dependence of density on

temperature or solute mole fraction is not monotonic, solidification by cooling from below for

some combinations of the bulk mole fraction, liquid-side temperature gradient, and

solidification rate can lead to, as discussed in §3.1, a configuration in which there exists

adjacent to the interface a sublayer in which the positive temperature and solute gradients

are destabilizing and stabilizing, respectively. If a liquid parcel in this sublayer is displaced
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downward, it will lose its excess heat more rapidly than its excess CdTe mole fraction, again

because the thermal diffusivity is much larger than the solute diffusivity. Its CdTe mole

fraction will thus exceed that of the surroundings, and so the parcel will be less dense than

the surrounding liquid. The resulting buoyancy force will tend to move the fluid parcel

vertically upward. Hence, the initial displacement engenders a restoring force, which can

result in overshoot of the parcel's initial (equilibrium) position. Such a configuration is in

the "diffusive" regime, and the motion is said to be "overstable', with the temporally growing

oscillatory parcel displacements leading to the oscillatory onset of convection.

The difference between the mechanisms by which the onset of motion occurs in

configurations in which the temperature gradient is everywhere stabilizing, and in those in

which temperature is destabilizing in a sublayer adjacent to the interface, is manifested in

qualitative differences between the neutral curves, and hence the stability boundaries, for the

Pb-Sn and Hgl.xCdxTe systems.

The most notable feature of the neutral curves in the present case is that the onset of

buoyancy-driven convective instability is associated with an oscillatory mode, unlike the

normal (e.g., Pb-Sn) case. Moreover, for each wavenumber for which it exists, the

corresponding oscillatory neutral curve bounds the range of stable C. from below, rather

than from above as in the normal case. As the extremal values of C.. on the morphological and

oscillatory convective neutral curves approach, the range of bulk mole fractions for which

plane-front solidification is stable disappears. This contrasts to the normal case, in which

plane-front solidification is always stable for sufficiently dilute solutions (i.e_, C. lying

below the minima of the morphological and steady convective neutral curves).

These features of the neutral curves have profound consequences for the stability

boundaries in the "t-C. plane. For Hgl.xCdxTe, plane-front solidification can be unstable at all

solidification rates if the bulk mole fraction is chosen sufficiently low, as shown in §3.5.

This is because the effect of a destabilizing temperature gradient in the sublayer adjacent to

the interface becomes stronger as the bulk mole fraction decreases (due to a more prominent
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density maximum as the composition approaches pure HgTe), and the stabilizing effect of the

solute gradient diminishes (because it is proportional to C.). On the other hand, in Pb-Sn

directionally solidified by cooling from below, plane-front solidification is stable for any

solidification rate and liquid-side temperature gradient if the solute bulk mole fraction is

sufficiently low (Coriell et al. 1980; _ztekin & Pearlstein 1992).

For Hgl.xCdxTe , plane-front solidification can be unstable at all values of the bulkmole

fraction (less than C, - 0.2) if the solidification rate exceeds a critical value Yc. The

explanation for this result is made clear by reference to figure 3.6(a-d). For values of C.

below the dashed curves, plane-front solidification is unstable with respect to the onset of

overstable buoyancy-driven convection, because the stabilizing influence of the bottom-

heavy solute stratification is insufficiently strong to overcome the destabilizing temperature

gradient in the sublayer adjacent to the interface. Above the solid curve, the configuration is

unstable with respect to the morphological instability. As y approaches "fc from below, the

stable region is "pinched* from below and above until at Yc it finally disappears. This

situation differs from that for Pb-Sn, for which plane-front solidification is stable in a

region bounded above by the morphological and convective portions of the stability

boundaries.

In a single-component fluid with an unstably stratified layer overlying or underlying a

stably stratified region, convective motion is typically localized in the unstably stratified

layer, but may penetrate into the adjacent stable region. In his early analysis of the onset of

thermal convection in a water layer with the temperature maintained at 0°C at the bottom and

in excess of 4°C at the top, Veronis (1963) showed that convection occurs in the unstably

stratified region and penetrates into the stably stratified region as well. He determined the

extent of penetration for different ratios of the stably stratified layer thickness to the total

layer thickness. He also found that convection in the stably stratified region is viscously

coupled to the more vigorous motion in the unstable layer. Walton (1982) and Zangrando &

Bertram (1985) have considered a doubly-diffuslve fluid layer with a uniform vertical
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temperaturegradientand a nonuniformvertical solute gradient. Both of these studiesshow

the disturbancesto be localized about the neighborhoodof the critical depth at which the

salinity gradient reachesits minimumvalue. In our work, when the liquid-solid interface is

adjacent to a sublayer in which the temperaturegradient is destabilizing,the disturbances

associatedwith the oscillatoryonset of buoyancy-drivenconvectionare largely confined to

that thermally unstably stratified sublayer.

As discussed above, the oscillatory onset of buoyancy-driven convection and the

localizationof the disturbancesare associatedwith the occurrenceof a sublayerin whichthe

temperature gradient is destabilizing. Hence, the results should be expected to apply

qualitatively to the solidification of other binary or multicomponent liquids in which

(=3pL/_T)(_)TL/aZ)changessign within the layer.

We recall from §3.5 (see figure 3.2b for C, - 0.025) that for Hgl.xCdxTe, basic state

density profiles more complicated than monotonic and unimodal can occur. For several cases

(both unstable and neutrally stable) in which the basic state density profile exhibits both a

local maximum and a local minimum, examination of the eigenfunctions of the disturbances to

the temperature, solute, and vertical velocity shows that the disturbances are localized

within the sublayer in which the thermal stratification is destabilizing. The eigenfunctions

are qualitatively similar to those for the case in which a single extremum (a maximum)

occurs, which is not surprising since in each case disturbance localization is a consequence of

confinement of the destabilizing tempera(ure gradient to a sublayer adjacent to the liquid-

solid interface, and even when the basic state density profile has two local extrema, the

thermal contribution to the right-hand side of (3.2) has only one sign change.

Our results demonstrate that nonmonotonic variation of density with temperature can

have dramatic qualitative effects on the onset of instability in an unbounded horizontal fluid

layer undergoing plane-front solidification. The existence of a sublayer in which the thermal

stratification is destabilizing should also have important consequences for the convection

which occurs in vertical Bridgman growth in ampoules of finite radius, as well as in zone
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melting and other processes used to grow Hgl.xCdxTe crystals from the melt. To date,

however, these effects have not been observed in simulations of buoyancy-driven convection

in Hgl.xCdxTe for these geometries, which have used equations of state that do not properly

account for the nonmonotonic dependence of density on temperature. The axisymmetric

simulations of vertical Bridgman growth by KJm & Brown (1989) employ a linear equation

of state of the form (3.1), even though the CdTe mole fraction in the liquid near the interface

is about 0.075 in each computation and the density is known to depend nonmonotonically on

temperature for CdTe mole fractions up to at least 0.1. The computations of Apanovich &

Ljumkis (1991) for zone melting of Hgl.xCdxTe use an unusual equation of state in which the

density of Hgl.xCdxTe depends quadratically on temperature for x _ 0.13, and is independent of

temperature for x - 0.13.

For Pb-Sn alloys, we have shown in Chapter 2 (cf. C)ztekin and Pearlstein 1992) that

the onset of convection can be suppressed significantly at modest rotation rates. This is

undoubtedly due to the well-known Taylor-Proudman mechanism, described by

Chandrasekhar (1961). According to the Taylor-Proudman theorem, _ motion parallel

to the axis of rotation in a uniformly rotating inviscid fluid is prohibited at any nonzero

rotation rate. If this theorem were strictly applicable to a viscous fluid, the onset of steady

convection would be prohibited, since the flow in convection cells must have a vertical

component. Instead, in a viscous fluid, one sees an inhibition of the onset of steady convection,

with the degree of inhibition (expressed here as an increase in C.) increasing with .,3o.

Although, the Taylor-Proudman theorem applies only to steady flows, we find that the

rotation still suppress the oscillatory onset of buoyancy-driven convection during directional

solidification of Hgl.xCdxTe, as presented in §3.6. It is not surprising that the morphological

instability is unaffected by rotation. The morphological instability occurs at very short

wavelengths, so the motion is almost perpendicular to the solidification front (i.e., aligned

with the axis of rotation). Hence, the Coriolis acceleration does not sensibly affect the

morphological instability.
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Finally, Antar (1991) has presented a linear analysis of the onset of convection in a

horizontal fluid layer cooled from below, using an approximate equation of state for

Hgl.xCdxTe. Although he purports to consider "convective instabilities in the melt for

solidifying mercury cadmium telluride" his analysis differs from ours in that no phenomena

associated with solidification (existence of a moving or deformable interface at which phase

change occurs, nonlinear basic state solute stratification due to rejection or preferential

incorporation at the interface, latent heat effects at the interface, etc.) are included.

Moreover, comparison to Antar's results is precluded because his linear vertical basic state

thermal stratification is inconsistent with his definition of the temperature difference across

the fluid layer. Specifically, the basic state temperature distribution (Antar's equation (1))

requires the bottom temperature to be T o- AT, which is inconsistent with his definitions of

T o (temperature where _p/_)T is zero, determined by Antar's equation of state) and AT

(temperature difference between top and bottom of the layer). This error vitiates his

analysis, which uses a thermal Rayleigh number defined in terms of a temperature difference

inconsistent with the basic state. That this inconsistency is not simply an apparent one due to

a typographical error is confirmed by reference to an earlier paper (Antar 1987) employing

the same basic state and disturbance equations, in which a different (and highly unusual)

definition of AT (related to the actual overall temperature difference by a constant dependent

on the temperature at the top or bottom wall; see figure 1 of Antar 1987) was used to achieve

consistency. That definition of AT was the only one consistent with the basic state, and hence

with the analysis and results. Unfortunately, Antar's 1991 paper defines AT as the overall

temperature difference, and so is wrong.
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CHAPTER 4

Stability of Dendritic Solidification of a Binary Liquid,

including Coriolis Effects

4.1. Introduction

Although plane-front solidification (in which the liquid and solid are separated by a

well-defined interface that remains planar and translates at a constant velocity) is desirable

in many applications, solidification of many binary alloys under conditions of practical

interest occurs dendritically. Dendritic solidification occurs in a so-called "mushy" zone

between the solid and melt in which dendrites, consisting of long vertical stems with

secondary and tertiary branches, are immersed in interdendritic fluid. This phenomenon is

Illustrated in photographs by Huppert & Worster (1985) and Chen & Chen (1991) of the

mushy zone in a dendritically solidifying aqueous ammonium chloride solution. In such a

case, the dendritic region might be modeled as a single domain, in which the macroscopic

structure (i.e., features that scale with the mushy-zone thickness) are considered to be more

important than the microscopic morphology (i.e., features dependent on a detailed stochastic

description of dendrite location and shape). Thus, in many previous theoretical investigations

of its evolution and behavior, the mushy zone has been considered as a porous medium with

anisotropic permeability. A review of plane-front and dendritic solidification has been given

by Glicksman et al. (1986).

The gradients of temperature and solute which necessarily occur in a solidifying binary

or multicomponent liquid can destabilize the nominally motionless basic state, leading to the

onset of buoyancy-driven convection. Analysis of the convective motion in solidifying alloys

is complicated by the fact that temperature and composition in the mushy zone are related by

the phase diagram, and by the fact that phase change leads to motion and deformation of the

boundaries between the melt, mushy zone, and solid. We will refer to these boundaries as the
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liquid/mushy-zoneand mushy-zone/solidinterfaces. Characteristicof a moving boundary

problem,their locationsare not known in advance,and must be computedas part of the

solution.

For binary liquids with k < 1 (e.g., Pb-Sn alloys) for which the equation of state is

adequately represented by the linear relation

P = Po [1 - _T(T- T 0) - O.c(C - Co)] ,
(4.1)

cooling from below leads to dendritic solidification with a stabilizing temperature gradient

and a destabilizing composition gradient in both the mushy zone and liquid. The vertical

composition gradient in the mushy zone is almost constant, while in the liquid there is a thin

compositional boundary layer adjacent to the liquid/mushy-zone interface. These

stratifications can lead to two different convective modes, as discussed by Worster (1992) in

his analysis of the stability of dendritically solidified binary alloys. One mode, referred to as

the boundary layer mode, associated with the thin compositional boundary layer in the liquid

adjacent to the liquid/mushy-zone interface, is largely confined within this layer, and has a

relatively small critical wavelength (on the order of its thickness). The boundary layer mode

penetrates only weakly into the mushy zone, which is thus essentially stagnant. On the other

hand, the mushy layer mode is driven by the adverse compositional stratification in the

mushy zone and has a larger critical wavelength that scales with the mushy-zone thickness.

These two convective mode types are analogous to those found by Chen & Chert (1988) in

superposed porous and liquid layers heated from below. _ - _ _

The onset of buoyancy-driven convection in dendritically solidified binary liquids has

been investigated by Fowler (1985), Nandapurkar et al. (1989), and Worster (1992) by

means of linear stability analysis. In all three studies, the mushy zone was.... modeled as a

porous medium, in which the kinetics of the phase change are sufficiently fast so that

nucleation and other nonequilibrium effects can be neglected. Thus, the temperature and

composition of the mushy zone were taken to be related by the liquidus of the phase diagram.
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Fowler (1985) considered solid volume fraction of solid in the porous layer to be a

dynamical variable, but did not admit perturbations to the liquid/mushy-zone or mushy-

zone/solid boundaries. He used Darcy's law as an approximate description of the conservation

of momentum in the porous layer, and considered the case in which the solute diffusivity

vanishes, so that the thickness of the solutal boundary layer adjacent to the liquid/mushy-

zone interface is zero. Thus, the onset of convection must Occur via the mushy layer mode.

Although Fowler's general formulation allowed for the solid volume fraction to be treated as a

dynamical variable, his analysis was restricted to a case in which that quantity was

asymptotically zero. Thus, no interaction was allowed between buoyancy-driven convection

and solidification.

Nandapurkar et al. (1989) used the momentum equation developed by Ganesan & Polder

(1990) from systematic averaging of the Navler-Stokes equation over a "representative

volume" large compared to the microscopic scale (primary dendrite arm spacing) and small

compared to the characteristic length scale (i.e., thickness) of the mushy zone. In their

analysis of the one-dimensional basic state, the volume fraction of liquid was computed from a

thermodynamically self-consistent formulation. However, the volume fraction of liquid was

not allowed to be disturbed in the stability analysis, which is thermodynamically

inconsistent. Moreover, the stability analysis of these authors did not allow the mushy-

zone/liquid interface to move (relative to an inertial frame) or deform. These assumptions

significantly suppressed potential interactions between convection and solidification.

Like Fowler, Worster (1992) uses Darcy's law in the porous medium and takes the

porosity to be a dynamical variable, but admits disturbances to the location and shape of the

liquid/mushy-zone boundary, although not to the mushy-zone/solid interface. He concluded

that onset via the boundary layer mode is relatively Independent of the structure of the mushy

zone, while onset via the mushy layer mode is strongly dependent on the structure of the

porous medium, and in particular on the porosity profile in the mushy zone.
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We use a linear stability analysis to study the onset of buoyancy-driven convection in the

horizontally unbounded liquid and underlying mushy zone of a binary alloy undergoing

dendritic solidification. The mushy zone Js modeled as a porous medium with anisotropic

permeability. The local porosity, as well as the locations of the boundaries between the solid

and mushy zone and between the mushy zone and liquid, are taken as dynamical variables, to

be determined as part of the solution. This work serves to identify the mechanism by which

Coriolis effects affect the onset of buoyancy-driven convection in dendritically solidifying

binary alloys. The analysis is illustrated by results for the Pb-Sn system.

This Chapter is organized as follows. We present the governing equations in §4.2 and an

appropriate nondimensionalization In §4.3. The one-dimensional basic state and linear

disturbance equations, both derived from the dimensionless equations, are given in §4.4. The

numerical solution technique is described in §4.5. Results for Pb-Sn binary alloys are

presented in §4.6 and discussed in §4.7.

4.2. Formulation

4.2. I. Governing Equations

A schematic of the solidifying system is shown in figure 4.1. A binary liquid of infinite

horizontal extent in which the bulk mass fraction of solute is C. solidifies at a constant

nominal rate Vj due to cooling from below, and is rotated at a constant angular velocity D.

about a vertical axis parallel to the gravity vector g = -giz. A mushy zone of nominal height

H m (to be determined as part of the solution) lies between the melt and solid. For

convenience, we adopt the practice of previous investigators (e.g., Coriell et al. 1980; Fowler

1985; Worster 1992) and write the governing equations in a reference frame translating

with the nominally steady velocity (izV l) of the moving interface and rotating at a constant

angular velocity _ about iz, but refer the velocities to the laboratory frame.

The fluid density, Pt, is taken as a constant (Po, the liquid density at its melting point for

C, = 0)except in the buoyancy terms in the liquid and mushy-zone momentum equations,

g

IB

t

[]

B!

J

lib

m

m
m
IB
I

m

mm

r_

wg

J

Ilml

u

m
w

z

I

m

BI
lib



55

r •

I=1==

where it is approximated by (4.1). The density of the solid is also taken as Po, so that the

effects of solidification shrinkage are neglected.

In the liquid, the motion is governed by the Oberbeck-Boussinesq equations

V oUL=0 , (4.2a)

- lo_Z. +UL" VUL+2*'3XUL+QX(Qxr):-VPL-Pfgiz+vV2UL, (4.2b)
PO PO

in a reference frame translating with the nominally steady velocity (izVx) of the moving

interface and rotating at a constant angular velocity Q about iz, where u L and PL are the

velocity and pressure in the liquid, and v is the kinematic viscosity. The equations for

conservation of energy and species in the liquid are

a_j.T_V aTL
at I az + UL ° VTL : teLV2TL' (4.2C)

_t- VI _ + uL ° VCL = DL V2CL' (4.2d)

where TL, CL, KL, and DL are the temperature, solute concentration, thermal diffusivity, and

the solute diffusivity in the liquid, respectively. Since the reference state corresponds to the

pure solvent at its melting point, the equation of state in the liquid can be written as

(4.2e)

where (xT and a c are the thermal and solutal expansion coefficients, respectively, and T M Is

the melting temperature of pure solvent.

The mushy zone is modelled as a porous medium saturated by interdendritic fluid. Its

permeability is taken to be orthotropic, with horizontal isotropy. For conservation of mass

and momentum, we adopt the model of Ganesan & Poirler (1990) developed by systematic
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averagingof the Navier-Stokesequationsover a "representativevolume"large comparedto

the microscopicscale (primarydendritearm spacing)and smallcompared to the thickness of

the mushy zone. In a reference frame translating with the nominally steady velocity (izV I) of

the moving interface and rotating at constant angular velocity _ about iz, the equations for

conservation of mass and momentum in the mushy zone are

V, u m =0, (4.3a)

_) _) Urn
_ _(_)-VI _ _ (_'-_) + Um

-_- SPfg-_ --_-oiz-V _($) u m +v V2Um,
(4.3b)

where u m and Prn are the superficial velocity and pressure in the mushy zone, # is the volume

fraction of liquid (henceforth referred to as the volume fraction), and P(_) is an orthotropic

tensor with horizontal isotropy whose horizontal and vertical components are

Ph(_) = 1/Kh(_) and Pv(_) = l/Kv(_), respectively, with Kh($) and Kv(_) the components

of the orthotropic permeability tensor in the mushy zone. The functional dependence of K h and

K v on $ is discussed in Appendix D.

The mushy zone is considered to be a continuum, in which the porosity variation is

continuous. The thermophysical properties of the mushy zone (specific heat, thermal

conductivity, permeability, and solute diffusivity) are taken to be functions of the temporally

and spatially varying volume fraction _. The models we use for conservation of energy and

solute in the mushy zone have been employed by several investigators (Worster 1986;

Nandapurkar et al. 1989). These conservation equations are also formulated on a scale large

compared to the spacing between primary dendrite arms but small compared to the thickness

of the mushy zone. The temperature and interdendritic solute concentration are assumed to be

uniform in the representative volume. Transport of heat and solute in the mushy zone is by

diffusion and convection. Moreover, as interdendritic fluid solidifies, latent heat is released
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within the mushy zone and solute is rejected into the interdendritic fluid. Therefore, the

conservation equations for energy and species must include terms proportional to the rate of

change of volume fraction. They can be written as

(4.3c)

-V[$ c3Z +Urn" VCm=VeDmVCrn-(1-k)Cm +Vl(1-k)Cm ' (4.3d)

where T m iS the local temperature in the mushy zone, C m iS the solute concentration in the

interdendritic fluid, Cp,m and Cp,L are the specific heats of the mushy zone and liquid,

respectively, km and Dm are the thermal conductivity and solute diffusivity in the mushy

zone, k is the segregation coefficient, and L is the latent heat of fusion per unit volume. The

thermophysical properties of the mushy zone are taken as volume-fraction-weighted

averages of the fluid and solid phases within the mushy zone

Cp.m = _pCp,L + (1 - _p)Cp,s , (4.3e)

km =¢k L +(1 -$)k s, (4.3f)

Dm = dPDL, (4.3g)

where Cp,s and ks are the specific heat and thermal conductivity of the solid. In the mushy

zone, mass diffusion in the solid phase is orders of magnitude slower than in the

interdendritic fluid, and so is neglected. The solidification kinetics in the mushy zone are

taken to be sufficiently fast that nucleation and other nonequilibrlum effects can be neglected.

Hence, the temperature and composition within the mushy zone are related by the liquidus
.. =

relationship, a linear approximation to which is given by=

Tm = TM + mLC m , (4.3h)
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where mL is the slope of the iiquidus. Equations 4.3(c,d) are written as two evolution

equations for the algebraically related temperature and interdendritic solute concentration in

the mushy zone. Thus 4.3(c,d) should be interpreted as evolution equations for ¢ (time

derivatives of which appear on the right-hand sides), and either T m or Crn. The equation of

state of the interdendritic fluid in the mushy zone is

p,=po [1- '_t(Tm- TM)-°c Cm] •

In the solid the energy equation is taken as

V2ts
o_t - Vl o_z -- _s

where T s and Ks are the temperature and thermal diffusivity of the solid, respectively.

(4.3i)

(4.4)

4.2.2. Boundary conditions

The boundary condition applied far from the liquid/mushy-zone Interface as z .--) ==is

CL_,C., (4.5)

where C.. is the bulk mass fraction of solute. At the liquid/mushy-zone interface,

_L(x,y,t)-z=0, the volume fraction, velocity, normal stress, and shear stress are

continuous

= 1 , (4.6a)

(4.6b)U L .= ELm ,

1(Pro-PL)-vn'{[VUm+(VUrn)'r] °n-[VUL+(VUL)I"n}=0'p0 (4.6C)

{[ { )'1 [ ( )'1}t- rum+ VU m .n- VUL+ VEI L .n =0, (4.6d)
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where n and t are normal and tangential unit vectors, respectively. We also require

temperature and composition to be continuous

TL = Tm, (4.6e)

CL = Cm, (4.6f)

at the liquid/mushy-zone interface, and that the energy and solute balances across that

interface

VT L • n = _'T m o n, (4.6g)

V'CLo n=V'C m. n,

be satisfied.

On _s(x,y,t) - z = O, the general frame-invariant mass balance

across the interface between two regions reduces to

(4.6h)

(4.7a)

u m • n = O, (4.7b)

because we have assumed that the solid and fluid densities are equal. The no-slip condition is

um. t-O. (4.7c)

The composition and temperature at the mushy-zone/solid interface satisfy the

thermodynamic conditions

Cm ,, rain (CE, C./k) , (4.7d)

Tm =Ts, (4.7e)

where C E is the solute concentration on the eutectic isotherm.

the mushy-zone/solid interface requires

Conservation of energy across
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-L_V s. n=k mvT m-n-k svT s°n, (4.7f)

where V s is the velocity of the mushy-zone/solid interface referred to the laboratory frame.

4.3. Nondimensionalization

4.3.1. DimensionlessGoverning Equations

We scale the length, time, temperature in the liquid and solid, and the velocity, vorticity,

pressure, and solute mass fraction in the liquid with H L, HE/V I, GEHL, Vl, VI/HL, PoVIV/HE , and

C,,, respectively, where HE = DL/V l is the characteristic length associated with the solute

gradient at the liquid/mushy-zone Interface. The length, time, temperature, velocity,

vorticity, pressure, and solute mass fraction in the mushy zone are scaled with H m, Hm/V x,

GEH m, V], VI/H m, poVlV/Hrn, and C., respectively, where H m iS the mushy-zone thickness. The

dimensionless governing equations in the liquid are

I
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(4.8a)V._ E =0 ,

, o" ]_L_'CL +I_L,V_L +2_*Xl_ L + x(_*xr) =

-VI_E Pf iz + V2 UL , (4.8b)
pot 3 Sc

LeI._L _ I_L.V-_-LI=V2"_L ' (4.8C)-_Z +

+ :  4.8< 1
o_'cL

where the dimensionless variables LI L, PL, I"L, and E L are, respectively, velocity, pressure,

temperature, and solute mass fraction in the liquid, Sc = riD E and Le = DE/K L are the

Schmidt and Lewis numbers, respectively, y-VI/(gDL) 1/s is the dimensionless

solidification rate, and Q*=_HL/Vi=Q (DL/g2)l/S/72 iS the dimensionless angular

velocity.
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The dimensionless equations in the mushy zone are

L =

m

=_

W

Vm° Um =0,

Um ° Vm_-_-_-I + 2_, Q*

_ _ Vml_m _2pf

po_,3 Sc
* iz - 4>P*lJm + V2 IJrn ,

-Vm mCpm m - Um ]= Vm" kn_ VmT"m -_ aZm/'

O_m aZm +
_ (l"k) Cm (_'a-_m- _a---_-m_,

(4.9a)

(4.9b)

(4.9c)

(4.9d)

m*l'm = + "_- Cm , (4.9e)

where V m - (_)/O_Xrn, ¢_/O_Yrn' _/_Zm) ' the dimensionless variables IJrn , Prn, "rrn, and (_rnare,

respectively, the velocity, pressure, temperature, and solute mass fraction in the mushy

zone, ]" = C-_kL/[L(g DE) 1/3] is the dimensionless liquid-side temperature gradient at the

liquid�mushy-zone interface, P, = ¥ gl/3Hm/DL 2/3 is the ratio of the mushy-zone thickness to

the characteristic length associated with the solute gradient in the liquid, kr_ = _ + (1 - ¢)k*

is the thermal conductivity of the mushy zone scaled by the thermal conductivity of the liquid,

k°= ks/k L is the ratio of the thermal conductivity in the solid to that in the fluid,
°

Cp,m= ¢ + ( 1 - ¢)Cp is the specific heat in the mushy zone scaled by the specific heat of the
0

fluid, cp = Cp.s/Cp, L JS the ratio of the specific heat in the solid to that in the fluid, _*= Hm2P,

m° = mLC.kL/[(L Hm(g DE)l/3)], and TI_ = TMkL/[( L Hm (g D L)1/3)].

The dimensionless energy equation in the solid is

Le (_aT'_ - aT_-_l = I_' V2"r$ , (4.10)
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where Ts is the dimensionless temperature in the solid, and _c*= Ks/It L is the thermal

diffusivity ratio.

4.3.2. Dimensionless Boundary Conditions

The dimensionless boundary condition applied far from the liquid/mushy-zone interface

8SZ --> _ is

liquid/mushy-zoneAt the

conditions are

-,1 . (4.11)

Interface 11L(Xrn,Ym,l:m) - Zm=0,

_==1 ,

the dimensionless boundary

(4.12a)

UL= Um , (4.12b)

[ (>']}• n-P, vat.+ v;, .n ,
(Pm-_)L)=n° {[VrnUm+ (VmUm) T]

(4.12c)

{[ ( o)l [ ( )'1 }t • VmUm + Um • n - _ VLI L + VUL • n = 0 ,
(4.12d)

I"L" _'rm ' (4.12e)

_L._ m , (4.12f)

V_'L.n =Vml" m • n, (4.12g)

F,VC L • I1 - VmC m • n. (4.1 2 h)

The boundary conditions at the mushy-zone/solid interface {s (Xm,Ym,¢m)- z_n"0 are

Um" n =0, (4.13a)

J

il

WB

i

I

Um" t = O, (4.13b)
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Cm = min (CE/C., 1/k) ,

_,Trn="rs ,

_ 3'$ VS*" n = kn_ Vm'Tm . n - k* V'TS • n1"

(4.13c)

(4.13d)

(4.13e)

where V_ is the velocity of the mushy-zone/solid interface scaled by Vp

4.4. Basic State and Linear Disturbance

4.4. 1. Basic State

Equations

The governing equations and boundary conditions (4.8)-(4.13) tn the reference frame

translating upward with the nominal interface velocity Vx and rotating at constant angular

velocity C_about the vertical axis admit a one-dimensional steady basic state solution. The

temperature and composition in each region, along with the porosity of the mushy zone,

depend only on the vertical coordinate z. The motionless basic state in the laboratory frame

corresponds to a nonuniform superficial velocity distribution in the mushy zone in the

moving frame. The mushy-zonelsolid and liquid/mushy-zone interfaces are horizontal,

stationary, and located at z = 0 and Hm, respectively, with the thickness Hm being determined

as part of the solution. The dimensionless equations governing the steady temperature,

composition, and volume fraction distributions in this motionless basic state are

c_-'_ + Le --_-1,= 0 (4.14a)
dz '

in the liquid,

dzm

(4.14b)

+ 3,d_ =0, (4.14c)
rd_
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d I_._._l+_d_m+_(1-k)Cm _-_-=0,dzm dzm dz,.

m,i, -Tm = + ?--Cm,

(4.14d)

(4.14e)

in the mushy zone, and

+Ledz =0 ,
(4.14f)

in the solid. Here '_L, (_L, Tm, C;m, _' and'l"s are the dimensionless basic state distributions of

temperature and concentration in the liquid, temperature, concentration, and volume fraction

in the mushy zone, and temperature in the solid, respectively.

The dimensionless boundary conditions applicable to the basic state are

Pc--) 1 (4.15a)

as z--)_=,

3(1) = i (4.15b)

?L(_,)= _,?re(l) , (4.15c)

P--,1.(_)= (_rn(1) ' (4.15d)

1 = dt--J'_(_)= dTm( 1 ) (4.15e-f)
clz dzm '

__ dCm(1 ) (4.150)
,._ = _ '

II

m

II

i

Ii

m

J

at the liquid/mushy-zone interface, and

p,?m(O) = "rs( o ), (4.1 5h)

_.,m(O) = min(CE/C., l/k), (4.15i)
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--_ _(0) = kn_(_ ) dTm(O ) _ k. dTs(O)
r dzm dz ' (4.15j)

u •

N

=_

ql!v _

at the mushy-zone/solid interface. We note that (4.15a-j) constitute ten boundary

conditions for a ninth-order differential equation system. However, the mushy-zone

thickness Hm is unknown, so that the problem is not overdetermined. Dimensionless basic

state temperature and concentration distributions in the liquid and the temperature

distribution in the solid can be determined by integrating (4.14a,b,f) subject to (4.15a),

(4.15e), and a linear combination of (4.15f, g) to get

T,(z)= +
' { -exp[-Le(z-P,)]} , (4 16a)T" ]., 1+_ 1

C-,1.(Z)= 1 I" exp[-(z-_)] , (4.16b)F,m*

is(Z)= AI+ A 2 exp I- Le-_l,
(4.16c)

where A1 and A2 are integration constants. The remaining nonlinear ordinary differential

equations (4.14c,d) subject to the thermodynamic constraint (4.14e) are integrated subject

to (4.15b,d,g,i) using a shooting technique to obtain Tm, P-'m, and _ along with the mushy-

zone height Hm. The integration constants A 1 and A2 in (4.16c) can be found using (4.15h,j).

Our basic state composition and volume fraction distributions in the mushy zone are in

excellent agreement with those of Flem!ngs (1974).

4.4.2. Disturbanc e Equationsand Boundary Conditions

To determine the conditions under which disturbances grow or decay, we write the liquid

velocity, temperature, composition, and pressure as

IJL(X,y,z,'r) = 0 + UL(X,y,z,'r ) , (4.17a)



_'L(x,y,z,'¢) ='rL(Z ) + TL(x,y,z,'¢) , (4.17b) U

C_,L(x,y,z,¢) = CL(Z) + CL(X,y,z,'c) , (4.17c) i

_>L(x,y,z,'c) = pL(z) + PL(X,y,z,'c) , (4.17d)
lIB

the velocity, temperature, composition, pressure, and volume fraction in the mushy zone as

I_m (Xm,Ym,Zm,'t:m) = 0 * Um(Xm,Ym,Zm,'l:m) ,

Tm (Xm,Ym ,Zm,'t:m) = Tm (Zm) + Tm(xm'Ym'Zm ,'t:m) ,

Cm(xm,Ym,Zm ,1:m) = _;m (Zm) + Cm(Xm ,Ym,Zm ,'Cm) ,

_)m(Xm,Ym'Zm'l:m) = Pm(Zm) + Pm(Xm'Ym'Zm"Cm) ,

¢(Xm,Ym,Zm,1:m) = _ (Zm) + #'(Xm'Ym 'zm '1:m) '

the solid temperature as

l"s(X,Y,Z, ¢) = Ts (z) + Ts(x,y,z,¢) ,

(4.17e)

(4.17f)

(4.17g)

(4.17h)

(4.17i)

(4.17j)

l

IB

J

II

m

IB

IB

n

the locations of the liquid/mushy-zone and mushy-zone/solid interfaces as
m

m

"qL(Xm,Ym,'_m) = Hm + 11L(Xm'Ym'1:m) ,

'qs(Xm ,Ym ,'¢m) = 0 + 'qs(Xm ,ym,'_m) ,

(4.17k)

(4.171)

and the local velocity of the mushy-zone/solid interface as

Vs(x,y,'¢ ) = 0 + Vs(x,y,'¢) , (4.17m)

where u L, T L, CL, P , and u , T m , C m , p , are the dimensionless velocity, temperature,
w

concentration, and pressure disturbances in the liquid and mushy zone, T s is the

dimensionless temperature disturbance in the solid, is the disturbance volume fraction,

I
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_L and "qs are the dimensionless disturbances to the liquid/mushy-zone and mushy-

zone/solid interface positions, and V_x,y,,_) = (_qs/_Zm)/P, is the dimensionless disturbance

to the mushy-zone/solid interface velocity.

Substituting (4.17a-m) into (4.8)-(4.13), subtracting the basic state equations, and

retaining only linear terms, we obtain dimensionless linear disturbance equations and

boundary conditions. The equations governing small disturbances in the liquid are

v • ML= 0 , (4.1 8a)

;] • rF_ . _ • v_u_,.I"°u; _ +2a'x u =- vp,÷_ T,iz+_sc c,a,+_L _)_ - _z

Le _-_ + w = V2T;.,
b'z

v=c;..o_: _ + dz wL =

(4.18b)

(4.18c)

(4.18d)

where w L iS the disturbance to the z-component of the liquid velocity, FT = ecTLDL/PokL,

FC = acC../po, Q* = t3 o iz is the angular velocity, and _o = Qo(DLIg2)I/31y2 is the

dimensionless rotation rate. Taking the curl of (4.18b) and the dot product of the result with

iz, we obtain an equation

=__

z

2, o
Sct,at az

for the z-component of the disturbance vorticity in the liquid, eL _

of (4.18b), the vertical component of the resulting equation is

I_v2w;- a v_,,_+2_oa-_._--_- V_T;.+ --__ 0z)- ¥4Sc _Sc

(4.19)

After twice taking the curl

v_'L.v'w,". (4.20)
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where V2 = 82/ax 2+ a2/_)y 2 is the horizontal portion of the Laplacian operator.

equations governing small disturbances in the mushy zone are

The i
lib

IB

Vm, Um =O , (4.21a) m

t

• " _7J •.._..rl aura o3 __'_+2--_XIJ =-Vm_ m

_cLT__m-aZmLT_ )

+ ,?Sc * -#sc -

w

V m . I%($)VmTm+ (l-k*) _ *" - - ,

(4.21b)

(4.21c)

m==..
lib

u

i
m
m
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Im

_..__d_m (_',d_m ")' V m _VmCm+ az--_CE_m'' ")a-rzm dz m dZm Wm •

• ' k Cm (4.21d)

m* • (4.21e)
Tm= -F-- Cm ,

where wm is the disturbance to the z-component of the fluid velocity in the mushy zone.

Taking the curl of (4.21b) and the dot product of the result with iz, we obtain an equation

..._ra_.___ o_ (_rn'__2_a; ¢3Wmt=Vm2(O m _ph(_)(Om (4.22)ScL °_m °_'Zm_,_ ,) (3Zm

for the z-component of the vorticity in the mushy zone, ram.

(4.21b), the vertical component of the resulting equation is

After twice taking the curl of

m
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_Sc

The disturbance energy equation in the solid is

• #

Let,(aT_at -__-1=_ v2Ts"

The far-field disturbance boundary conditions are

• FP,,(_)aw_l+v_
+ Pv(_)V2m Wm + a-_ L _ZmJ

,: aw; ,: . .w., =m =CL=TL-->O ,_z

(4.23)

(4.24)

(4.25a-e)

as z -+ ,=, and

_Ts --> 0 (4.26)
_z

as z _-=o. The disturbance boundary conditions linearized about the nominal liquid/mushy-

zone interface position (z m = 1) are

_'(Xm,Ym,l,_m) + _qL(Xm,Ym,_m) = O, (4.27a)
dz,.

WL(X,y,_,'_ ) = Wm(Xm,Ym,l,'cm) ,

°_WL(X'Y'_"¢)= a%Vm(Xm'Ym 'I,'tin)
l

°_z _m

_2 _2WL(X,Y,_,'_) = _2Wm(Xm,Ym,1 ,'_m)
az2 o_z_ '

(4.27b)

(4.27c)

(4.27d)

_3a3w_(x'Y'P'"c) a3Wrn(Xm'Ym'l"Cm) _ _ aWm(Xm'Ym'l"Cm) (4.27e)
az3 = az_ + Sc dzm aZm '
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P,mL(X,y,P,,_) = O)m(Xm,Ym,l,1:m) , (4.27f)
m

lm

o_TL(X,y,P, ,'_)

p o_Cl.(x,Y,P, ,'¢)
_z

p2 _mI,(x,Y,P, ,'¢) = _(°m(Xm ,Ym ,1 ,'¢m) ,
_ _m

TL(X,y,P,,'¢) '= P, Tm(xm,Ym, 1 ,_:m) ,

e •

CL(x,Y,F_,'¢) = Cm(xm,Ym ,1,'¢m) ,

d2"rL(_ ) 11L(Xm,Ym,'Cm) =
+ _ _2

aTm(xm,Ym ,1 ,'¢m) .d2"rm ( 1 ) .qL(Xm,Ym,,Cm) '
c3Zm ÷ dz_

, _,2d2_ _'_ ;(q Xm,Ym,1;m)=

w

_m(Xm,Yrn,l,'Cm) + d2Cm ( 1 ),qL(Xm,Ym,¢m),
azm

(4.27g)

(4.27h)

(4.27i)

(4.27j)

(4.27k)
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and those at the mushy-zone/solid interface are

°_Wm(Xm 'ym'O'l:m) = O)m(Xm,Ym,O,1;m) ,, O,
F

Wm(Xm,Ym,O,'cm) = o_Zm
(4.28a-c)

Ts(x,y,O,,:)+, p, dTs(_O ) 1]s(Xm,Ym,¢m ) = F_Tm(xm,Ym,O,1:m) + F_dTm(dzmO ! lqs(Xm ,ym,¢m),(4.28d )

#

• dC m ( 0 ) .qs(Xm,Ym,¢m ) = O,
Cm(X'y'O'_) + dz

(4.28e)

• aTm(X m,Ym, 0 ,'¢m)
--_,'(Xm,Ym,O,'Cm)-_F _10) aq'_(Xm'Ym'1:m) =km($)F '¢m 8Zm

- k* _T$_x" tyt O

_z + km(_ ) d2Tm(_ _ 0 ) q_(Xm,Ym,,_m) _ k* d2_$(clz20 ) qs(Xm,ym,,Cm),

. (l-k*) dTm(0) dp,(Xm,Ym,O.,_m). (l-k*) dTm(0 ) _Ti_(Xm,Ym,,_m)"
d_ dzm d_

(4.28f)
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4.4.3. Fourier Decomposition

We write the horizontal and temporal dependence of the dimensionless disturbance

quantities in the liquid and solid as exp(o_ + iaxx + iayy), where ax and ay are the x- and

y-components of the horizontal wavevector, and a is the temporal eigenvalue. The

dimensionless disturbance quantities in the mushy zone are similarly decomposed as z-

dependent amplitudes multiplied by exp(arn'¢ + iam,xX + iam,yY ). Substitution into (4.18c-d),

(4.19), (4.20), (4.21c-e), and (4.22)-(4.24) yields

( ' ' ' I 0.L2 L2*,Sc_ _a W L-2 dz ¥4Sc eL-_sc (4.29a)

1 d 1 1 _-'_-dWL 0 (4.29b)L2+ Scdz SC a _L+2 SC dz = '

IL2 + Led-aLel_.-Le _ WL=0dz (4.29c)

lit

m_

V

_r

mB

[  w.=oL2+ -a ZL- dz

in the liquid,

d

2____d_ m _3rFT a_em- _ a2x, re=O,
sc _n _'sc _sc

[ _- dl _ ] 2_;dw_= o 'L2m+_ dZm_ Ph(T_)- am am+ SC dZrn

(4.29d)

(4.29e)

(4.29f)

W
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[km(_)L2m. dkm(_) d l_k*) d d'_+Le_c;rn(_ ) d Le_c;m(_ ) amle mdZm dZr 

r
Le_,(1-cpldzm +_" d+(1-k*)rdzrn dzmdz m r m.JT Le dzm Win=0,+ L

(4.29g)

U

i

[_L2m+ d_ cl +p, 7$ d +dZmdzm _m P'(1-k)_ - F_7_O'm]Z'rn- P"--_ wrn

+ [ _.mdzmdd_m+ p,(l_k)Cm _'_-d. d_m _ P,(1-k)C m am] d_
=0 , (4.29h)

In the mushy zone, and

m* (4.291)
@m = "_" Xm '

I_¢ d LealOs=0 (4.29j)* L2 + Le _-

in the solid, where W L, _L, XL, and e L are, respectively, amplitudes of disturbances to the

vertical velocity, vorticity, solute distribution, and temperature in the liquid, W m, Qm, Zm,

e m, and ¢ are, respectively, amplitudes of disturbances to the vertical velocity, vorticity,

solute distribution, temperature, and volume fraction in the mushy zone, e s is the amplitude

of the disturbance temperature in the solid, and L2 = d2/dz 2 - a2 and L2m= d2/dZm2 - a_ are

linear operators. Here a and am are the dimensionless horizontal wavenumbers in the liquid

and solid, and mushy zone, respectively. Matching the solutions at the two interfaces requires

that the dimensional horizontal wavenumbers be the same. This gives the ratio of the

dimensionless wavenumbers as am/a = P, = Hm/HL. A similar matching procedure for the

temporal dependence gives the relationship a/a m = P,= Hm/HL.

The dimensionless disturbance quantities satisfy the boundary conditions

,.L-o,
(4.30a)

!
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WL(_ ) = Win(1 ) , (4.30b)
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_,d._(_,)w.= dWm(1 ),
az dzm

p2 d2Wl,(P,) = d2Wm(1 )
dz2 d_ '

_3 d3Wl.(P,) = d3Wm(1 ) + .._._( 1 ) dWm(1 ),
_z3 _ sc _

_QL(_) ='Qm(1) ,

p2 d_L(_) = d_m(1)
dz dzm '

eL(_)= _era(1),

ZL(F=)= Zm(1 ) ,

_d2TL(_) dem(1) d2Tm (1)
± + dz2 13L=dZm + dz_ PC,

__+ p2d2C,L(P,) dZm(1) d'_m(1 )
dz dz2 PL= dz,. + dz_ P"

at the liquid/mushy-zone interface, and

dWm(O) P-.m(O)= O,win(o)= dzm =

es(o)+ _,_( o) drm(o)
dz Ps= _,era(O)+ _, dZm PS,

d_m(O) 13s= O,
7"m(O)+ dzm

(4.30c)

(4.30d)

(4.30e)

(4.30f)

(4.30g)

(4.30h)

(4.30i)

(4.30j)

(4.3Ok)

(4.31a-c)

(4.31d)

(4.31e)



74 "=

km d_m( 0 ) _
k* d2-T'_( 0 ) O_m( 0 ) (f_( 0 ) + _ (0)o m

dz2 +(l-k*) dzm dzm
13s

dz m dz dzm
=0, (4.31f)

where the constants _s and _L are the amplitudes of the disturbed mushy-zone/solid and

liquid/mushy-zone interface positions, respectively. For the boundary conditions far from

the interface, we set all disturbances to zero

W L = --_= ZL = OL= _L = 0 as z _ =o, (4.32a-f)

d_=o asz .-_ - =. (4.32g)
dz

4.5. Numerical Solution

Our objective is to find conditions for which infinitesimally small disturbances decay

(Re(a) < O) for all but a finite number of critical wavenumbers (typically one), and are

neutral (Re(o) = O) for the critical wavenumber(s). These conditions separate basic states

that are linearly stable from those that are not'

In the previous section, we formulated an eigenvalue problem for systems of ordinary

differential equations on two semi-infinite intervals (in the liquid and solid) and a finite

interval (in the mushy zone), coupled by boundary conditions at the deformable

liquid/mushy-zone and mushy-zone/solid interfaces. For convenience, we truncate the

domain and solve the problem on a finite computational domain. With regard to the far-field

boundary conditions at z = :1:==,we set all disturbances to zero at z = P,+ h

W= DW =XL= OL=_L =0 at z =P,+ h, (4.33a-e)

in the liquid and at z = -h

e s=O at z =-h. (4.33f)
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in the solid. In this work, we have taken h to be 10. (We have checked a number of our

results using larger values of h, and have found that eigenvalues do not change sensibly for h

larger than 10.) Since we use Chebyshev polynomials in our numerical solution, we scale the

liquid, mushy-zone, and solid coordinates by z I - ( 2z- 2F,- h)/h, z 2 , 2z m- h, and

z 3 = (2z-h)/h respectively, so that each region lies between -1 and +1. The resulting

system Is solved using a Galerkin technique developed by Zebib (1987).

We approximate the highest derivatives of the amplitudes of the disturbance velocity,

vorticity, solute distribution, and temperature in the liquid, the velocity, vorticity, solute

distribution, temperature, and porosity in the mushy zone, and the temperature in the solid,

by truncated sums of Chebyshev polynomials of the form

N

WL(4)(Zl) = _ AjTj(zl),
j=O

(4.34a)

N

QL(2)(Zl) = _ BjTj(Zl),
j=O

(4.34b)

N

_,L(2)(Z1) = '_. CjTj(z1) .

j=O
(4.34c)

N

) = ,T_,DjTj(Zl),

j=o
(4.34d)

N

Wm(4)(z2) = _ EjTj(z2),
j=0

(4.34e)

::N

nm(2)(z2) = _ FjTj(z2),

j=-0

N

X:(2)(z2) = _,, GjTj(z2),

j=0

(4.34f)

(4.34g)
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N

e(2)(z2) = _ HjTj(z2)'

j=o

(4.34h)

N

_(1)(Z2) = _ KjTj(z2),

j=0

(4.34i)

N

(_'2)(z3) = _E_MITI (z3)' ( 4.3 4j)

j=o

where Tj is the j-th Chebyshev polynomial and the coefficients Aj, Bj, Cj, Dj, Ej, F], Gj, Hj, Kj,

and Mj are to be found. Representations of lower order derivatives can be found by integrating

(4.34a-j) and using standard properties of Chebyshev polynomials. The procedure described

by Zebib (1987) reduces the problem to a matrix eigenvalue problem

As+oBs=0, (4.35)

where o is the temporal eigenvalue, and the elements of the square matrices A and B depend on

the square of the horizontal wavenumber a2= a2x+ a2, the bulk mole fraction C., and the other

dimensionless parameters.

In §4.6 we characterize the stability of the nominal one-dimensional basic state solution

in terms of the bulk concentration C. and dimensionless solidification rate 1', with all other

parameters taken as fixed. For each value of C,, we seek one or more critical values of 1,
i,

(denoted by 1") such that for 1'> 1'*, disturbances decay for all wavenumbers, while for 1'<1' ,

disturbances grow for all wavenumbers in some range. In order to determine the critical

value(s) of 1', we first determine the neutral curve (1' versus the wavenumber a) separating

those combinations of 1' and a for which all temporal eigenvalues (_ lie in the left half-plane (a

stable basic state) from those for which at least one eigenvalue lies in the right half-plane

(an unstable basic state). To determine the bulk concentration on the neutral curve for an

arbitrarily chosen wavenumber a, we first choose a value of 1' and compute all eigenvalues a

using (4.35). If all eigenvalues have negative real parts, 1' is decreased by half the previous

value; otherwise the new value of 1' is chosen as twice the previous value. This process is

i
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continued until we determine two values of 1' between which at least one sign change is

obtained in the real part of the least stable temporal eigenvalue. The dimensionless

solidification rate on the neutral curve Is then determined using a bisection method.

To compute the critical dimensionless solidification rate y* at which instability first

occurs (i.e., the maximum on the neutral curve), we arbitrarily choose a wavenumber and

compute the corresponding 1' on the neutral curve using the procedure described above. We

then fix y at the value computed at the previous step and compute the eigenvalues a for a

discrete set of wavenumbers in a chosen range. From this set we select the wavenumber

corresponding to the a with largest real part. If this wavenumber is at an endpoint of the

chosen range, we extend the range to include the wavenumber corresponding to the largest

Re(G). We then select this wavenumber and determine the corresponding ¥ on the neutral

curve. We continue this process until the relative change in 1'is less than 10 -s. Spectral and

domain convergence results are shown in Table 3.

4.6. Results

The solutions of (4.29)-(4.33) depend on seventeen dimensionless parameters, as

defined in §§4.2 and 4.3. (The approximate solutions on the finite interval also depend on h.)

It is therefore not feasible to numerically explore the effects of more than a few combinations

of these parameters on the onset of convection. In this work, we have thus restricted

ourselves to the Pb-Sn system which, due to the low melting points of both components, has

been the subject of several experimental studies. The thermophysical properties of the liquid

and solid phases are as used by Corlell et al. (1980) at reference conditions corresponding to

pure lead at its melting point. (The diffusivity of Sn in Pb used corresponds to an infinitely

dilute solution.)

Figure 4.2(a,b) shows the dimensionless basic state solute mass fraction profiles in the

liquid and mushy zone for C,=0.2,1'=2.59 x 10 -2 , and T'= 7.12 x 10 -2 . (For Pb-Sn

alloys, these values of the dimertsionless solidification rate and liquid-side temperature
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gradient correspond to V l = 80 _ sec -1 and GL = 50 K cm -1.) Note that the solute profile

varies almost linearly with the vertical coordinate z m in the mushy zone, within which

almost all of the solute variation is confined. In the liquid region adjacent to the

liquid/mushy-zone interface there is a compositional boundary layer, the thickness of which

is very small compared to the mushy-zone thickness. (Note that we have used different

length scales in the liquid and mushy zone. For the mushy zone the length scale is the

thickness Hrn, the dimensional value of which is 1.685 cm for this combination of GL, V I , and

C., and for the liquid the length scale is the diffusion length, which in this case is 3.75 x 10 -3

cm.) For the same values of y, ]", and C,, figure 4.2(c) shows the basic state porosity

profile. Figure 4.2(d-f) shows $(z m) for three other values of C,. The volume fraction is

largest (_ = 1) at the liquid/mushy-zone interface, and decreases monotonically to a nonzero

value at the mushy-zone/solid interface. These results show that as C. increases, the

porosity distribution becomes more linear and its value at the mushy-zone/solid interface

increases monotonically. Figure 4.2(f) shows that the mushy-zone thickness (H m = 0.527

cm) for C. = 0.5 is much smaller (so that the liquid in the porous medium is more mobile)

than for C, = 0.1, 0.2 or 0.35.

The dependence of the dimensional mushy-zone thickness, Hm, on the bulk mass fraction

and temperature gradient is shown in figure 4.3(a-c) for three solidification rates. The

solid, dashed, and dotted curves in each figure show Hm for y= 3.24x 10 -2

(Vx=100_sec'l), 1.62 x 10-3(VI- 50 I_ sec-1), 9.72 x 10 -3 (V I = 30 p. sec'l),

respectively. We see that Hm is a strong function of T"(note that three different logarithmic

scales have been used for Hm) and C., depends relatively weakly on y, and assumes a

maximum near C. = 0.2 for each combination of solidification rate and temperature gradient.

This maximum occurs because the composition difference &C m = Cm(1)'Cm(0) between the

top and bottom of the mushy zone reaches a maximum near C. = 0.2, and the mushy-zone

composition varies almost linearly with z, as shown in figure 4.2. As ACre decreases to zero

as C. approaches CE, Hm asymptotically decreases to zero. The decrease of Hm as C. decreases
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to the left of the maximum H m is again due to the fact that ,_Cm decreases with decreasing C..

For F = 7.12 x 10 -3 (GL = 5 K cm-1), figure 4.3(a) shows that H m is a decreasing function of

1. For r = 7.12 x 10 -2 (G L = 50 K cm-1), the variation of H m with I is much weaker (figure

4.3b), and for r = 0.285 (G L = 200 K cm -1) is nearly independent of y (figure 4.3c). We

also note that the mushy-zone thickness decreases strongly with increasing temperature

gradient.

For three values of C., figures 4.4(a-c) show neutral curves (,/versus a) for

F= 7.12 x 10 -2 (G L= 50 K cm -1) and rotation rates Qo = 0 rpm (solid curve), 300 rpm

(dashed-dot curve), and 500 rpm (dashed curve). These neutral curves correspond to steady

onset of buoyancy-driven convection; we have found no evidence for the oscillatory onset of

instability in the dendritic solidification of Pb-Sn alloys. For given values of C., and r, the

critical solidification rate (denoted by y*) is the maximum point on each neutral curve and

determines one point on the stability boundary. For y> y', the one-dimensional dendritic

basic state solution is stable for all wavenumbers a, whereas for 1 < _ it is unstable for some

range of a.

Figure 4.4(a) shows neutral curves (1 versus a) for C. = 0.1. At the extremum, the

critical solidification rate is y = 2.20 x 10 -2 (V I = 68 I_ sec -1) and the critical wavenumber

is a = 0.32 for the nonrotating case (solid curve). For Qo = 300 rpm the neutral curve

(dashed-dot curve) is displaced downward for all wavenumbers, indicating the stabilization

associated with rotation. Although the reduction in y* (to y = 1.82 x 10-2, corresponding to

V I = 56 i_ sec -1) is significant (note the logarithmic y-scale), the effect is particularly

strong at smaller wavenumbers (higher wavelengths). We also note that the critical

wavenumber has been shifted to a higher value. These effects will be discussed in §4.7. For

Do = 500 rpm, the critical solidification rate is reduced to y° = 1.571 x 10 -2

(Vi=48.51_sec-1) and the critical wavenumber has nearly doubled to a = 0.65. For

C, = 0.2, figure 4.4(b) shows neutral curves (y versus a) analogous to those for C, = 0.1.

The critical solidification rate assumes a maximum for this value of C. (nearly independent
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of _0) [Y" = 2.59 X 10 -2 (V I - 80.0 I_ sec-1), 2.30 x 10-2 (V! = 71 _ sec-1), and

1.86x 10-2(V!- 57.5 i_sec -1) for _o = 0, 300, and 500 rpm, respectively) and the

critical wavenumber increases (a = 0.27, 0.41, and 0.55 for Qo = 0, 300, and 500 rpm,

respectively]. The Coriolis acceleration again suppresses the onset of buoyancy-driven

convection with large wavelength as illustrated in figure 4.4(b). From the neutral curves

for C,. = 0.55 in figure 4.4(c) we see that aside from a slight shift downward to smaller

solidification rates [_ = 1.98 x 10 -2 (V! = 61.3 IZsec-1), 1.75 x 10 -2 (V! = 54 lz sec-1), and

1.42 x 10-2 (V! = 43.9 I_ sec -1) for _o = 0, 300, and 500 rpm, respectively], the results

are qualitatively similar to those for C, = 0.1 and 0.2. We note that the smallest stable range

of solidification rates is obtained for C, = 0.2, which will be discussed below in connection

with the stability boundaries.

The vertical structure of the disturbance amplitudes of vertical velocity, temperature,

and vorticity in the liquid and mushy zone, solute mass fraction in the liquid, and volume

fraction in the mushy zone are shown in figures 4.5 and 4.6 for Qo = 0 and 500 rpm,

respectively. The disturbances shown correspond to the least stable mode (i.e., that with

least positive or most negative Re(G)). For graphical clarity, the same length scale (based on

mushy-zone thickness) is used in both layers. In these two figures, the mushy zone extends

from z = -1 to 0, and the liquid lies above. Since temperature and composition in the mushy

zone are linearly related, only the structure of the temperature disturbance is shown.

For C.. = 0.55 and F = 7.12 x 10-2, figure 4.5 shows the disturbance amplitudes for the

nonrotating case at the critical conditions _, = 1.976 x 10 -2 (V! = 61 I_ sec -1) and a ,,, 0.32

(as determined from the neutral curve in figure 4.4c). Figure 4.5(a) shows that the vertical

velocity disturbance assumes a maximum just above the liquid/mushy-zone interface and

decays strongly in both layers. We also note that the depth of penetration of the convective

disturbance in each layer is of the same order. Figure 4.5(b) shows that the structure of the

temperature disturbance is similar, except near the mushy-zone/solid interface where the

temperature disturbance does not approach zero. This is due to the fact that the boundary
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condition (4.31e) (derived from the dimensional condition (4.7d)) requires that the solute

mass fraction in the interdendritic fluid be equal to the eutectic mass fraction on the deformed

mushy-zone/solid Interface. Thus, the relationship (4.29j) between the temperature and

solute mass fraction disturbances in the mushy zone requires that the disturbance

temperature be nonzero whenever that interface is deformed. Figure 4.5(c,d) shows that

disturbances to the liquid composition and mushy-zone volume fraction are largely confined

to very thin layers adjacent to the liquid/mushy-zone interface

For the same bulk mass fraction and temperature gradient as in figure 4.5, the vertical

structure of the same disturbance amplitudes, along with the vertical vorticity in the liquid

and mushy zone, are shown tn figure 4.6 for the P'.o = 500 rpm for the corresponding critical

conditions [y = 1.458 x 10 -2 (V I ,,, 45 p. sec -1) and a = 0.66]. Aside from the considerable

increase in the critical wavenumber, only quantitative differences are apparent in the

velocity, temperature, composition, and volume fraction disturbances compared to the

nonrotating case. The vertical component of the vorticity in the liquid and mushy zone is

shown in figure 4.6(e) to be highly localized near the liquid/mushy-zone interface and to

decay strongly within each layer.

For Qo = 0 and 500 rpm, we present our principal results in terms of a division of the

_-C,, plane in figures 4.7-4.10 for four values of F. These figures show the region (bounded

by the dashed curve) in which the one-dimensional dendritic solution exists along with

information regarding its stability and the stability of the one-dimensional plane-front

solution (which exists for all combinations of C., 1, F, and 'Qo)- Each region is characterized

according to whether the one-dimensional dendritic solution exists (and if so, whether it is

stable), and whether the plane-front solution is stable with respect to morphological and

convective disturbances (Chapter 2; cf. Corlell et al. 1980).

Figure 4.7(a) shows the division of the 1-C, plane for F ,,, 0.285 (G L ,= 200 K cm -1) and

.Qo = 0 rpm. The one-dimensional dendritic solution exists in regions 1 and 2, and is stable

at sufficiently high solidification rates (region 1) and unstable for lower values of .y (region
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2). (The turning point on the dendritic stability boundary (curve D) near C, .. 0.2 is

discussed in §4.7.) In regions 3-5, no one-dimensional steady solution of (4.8)-(4.13)

exists. The plane-front solution exists in regions 1-5, but is unstable with respect to the

morphological instability (curve M) in regions 1-3. The plane-front convective stability

boundary (curve C) separates region 4, in which the plane-front solution is morphologically

stable but convectively unstable, from region 5, in which the plane-front solution is stable

with respect to both morphological and convective disturbances. In summary, the one-

dimensional dendritic solution is stable in region 1 and the one-dimensional plane-front

solution is stable in region 5; elsewhere the plane-front solution is unstable and the dendritic

solution either does not exist or is unstable.

For the same value of F (0.285), figure 4.7(b) shows a similar division of the .PC=

plane for _o = 500 rpm. The dendritic stability boundary is shifted to slightly smaller

values of _' relative to the nonrotating case, constituting a small enlargement of region 1, in

which the dendritic solution is stable. As for disturbances to the plane-front solution, the

morphological branch is not sensibly changed, but the plane-front convective stability

boundary has shifted upward (Chapter 2), and so the range of bulk mass fraction and

solidification rate for which plane-front solidification is stable is significantly enlarged

relative to the nonrotating case. The greater degree of suppression of buoyancy-driven

convection that is achieved for the plane-front solution relative to the dendritic case is

discussed in §4.7.

Figures 4.8-4.10 show that the topology of the division of the "pC. plane becomes more

complex as the temperature gradient decreases. For F = 7.12 x 10 -2 (G L = 50 K cm-1),

figure 4.8(a-b) shows that for _o - 0 and 500 rpm, a new region (6) exists in which both

the plane-front and dendritic solutions are stable. For Qo - 0 rpm, figure 4.8(a) shows that

for the plane-front solution, the morphological and convective stability boundaries have

shifted downward, and stable plane-front solidification is confined to a smaller part of the

.pC,, plane than for F - 0.285. However, for this smaller temperature gradient, dendritic
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solidification is stable for a larger range of 1, and C. relative to the F = 0.285 case. For

r'= 7.12 x 10 -2, the dendritic stability boundary Intersects the dendritic existence curve

just above the latter's intersection with the plane-front morphological stability boundary.

Note also that the turning point on the dendritic stability boundary is more pronounced. For

-"2o = 500 rpm, figure 4.8(b) shows that the regions in which only one one-dimensional

solution is stable (regions 1 and 5 for dendritic and plane-front solidification, respectively)

are considerably enlarged relative to the nonrotating case, whereas the size of the region in

which both one-dimensional solutions are stable (region 6) is relatively unchanged, since its

boundaries (the existence curve for dendritic solidification and the plane-front

morphological stability boundary) are unaltered by rotation. The effect of rotation on the

dendritic stability boundary Is considerably stronger than for F = 0.285.

For F = 3.56 x 10 -2 (G L - 25 K cm -1) and D.o - 0 rpm, figure 4.9(a) shows that the

dendritic stability boundary intersects the dendritic existence curve well below the plane-

front morphological stability boundary, so that the part of the _,-C. plane in which the plane-

front solution is stable and the dendritic solution exists (region 6 in figure 4.8) has been

divided according to the stability of the dendritic solution. In region 6, the dendritic and

plane-front solutions are both stable, as for F = 7.12 x 10 -2, while in region 7, the dendritic

solution is unstable. We note that the mushy-zone thickness predicted in the lower part of

region 6 is exceedingly small; one can conceive of more sophisticated solidification models

(e.g., specifically predicting cellular solidification and imposing a threshold criterion on

mushy-zone thickness for dendritic solidification) that would not predict the existence of

dendritic solution in the lower part of region 6. For Qo = 500 rpm, figure 4.9(b) shows

that region 7 disappears at the expense of region 6, consistent with the stabilizing influence

of rotation on dendritic solution manifested in the significant displacement of the dendritic

stability boundary.

For F = 7.12 x 10 -3 (G L = 5 K cm --1) figure 4.10(a) shows for the nonrotating case that

the dendritic solution exists in a part of the 1-C. plane (region 8) in which the plane-front
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solution is morphologically stable and convectively unstable. Here, as in region 2, both the

dendritic and plane-front solutions exist, but neither is stable. The characteristics of the

other regions are unchanged. (We have not computed the boundary separating regions 6 and 7

for C, < 1 x 10 -s because, as discussed above, the basic state mushy-zone thickness predicted

by our model becomes exceedingly small as the bulk mass fraction decreases further.) Note

that the stable region of dendritic solidification becomes larger with decreasing temperature

gradient. For _o - 500 rpm, figure 4.10(b) shows that region 8 has disappeared at the

expense of regions 6 and 7, owing to the intersection of the dendritic existence curve and the

plane-front morphological stability boundary at a larger value of 'y than the latter's

intersection with the plane-front convective stability boundary. We also note that the

dendritic stability boundary intersects the dendritic existence curve at a value of C. in excess

of 1 x 10 -s. We also note that the degree of rotational stabilization for both the plane-front

and dendritic solutions is considerably greater than shown in figures 4.7-4.9 for larger

dimensionless temperature gradients.

4.7. Discussion

Our analysis of the conditions under which the governing equations (4.8-13) admit a

steady one-dimensional dendritic solution for Pb-Sn alloys, and the conditions under which

that solution and the one-dimensional plane-front solution are stable, allows for a more

complete discussion of the solidification regimes for binary alloys than has heretofore been

possible .....

That a one-dimensional steady dendritic solution exists for only some combinations of the

temperature gradient, Solidification rate, and bulk mass fraction is not surprising since this

basic state is determined as the Solution of a nonlinear ordinary differential equation system,

for which a solution need not exist. The boundary in the parameter space within which the

dendritic solution ex!sts is determined by two constraints. One is that the liquid volume

fraction at the liquid/mushy-zone interface is unity and cannot exceed that value within the
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mushy zone. Hence, the vertical derivative of the volume fraction at the liquid/mushy-zone

interface should be nonnegative. This condition is satisfied in the region above the lower

branch of the dendritic existence curve. The other constraint is that the solute mass fi'action

in the interdendritic fluid cannot exceed the eutectic composition, C E. The interdendritic

solute mass fraction in the basic state depends monotonically on the vertical coordinate z.

Therefore, if the solute mass fraction at the liquid/mushy-zone interface is less than C E, this

constraint can be satisfied everywhere in the mushy zone. Below the upper branch of the

dendritic existence curve, the latter constraint is satisfied, and the mushy-zone thickness

asymptotically approaches zero as this branch of the curve is approached from below. Hence,

a one-dimensional dendritic solution exists only in the region between the two branches of the

dendritic existence curve.

When the plane-front morphological stability boundary is crossed, a cellular interface

develops. As the solidification rate Increases past the critical value, the cells becomes

deformed and deepen. The formation and evolution of the cells have been studied theoretically

by Ungar & Brown (1984) and Ungar et al. (1984). For still larger solidification rates,

dendritic solidification occurs, with dendrites typically consisting of long vertical stems with

secondary and tertiary branches. The development of the cellular interface and transition to

dendritic solidification were observed experimentally by Trivedi (1984) and Venugopalan &

Kirkaldy (1984). We thus conclude that the part of region 3 (cf. figures 4.7-4.10) below

the lower branch of the dendritic existence curve is a region of cellular solidification, in

which the plane-front solution is morphologically unstable and the dendritic solution does not

exist. The experimental evidence showing that dendritic solidification occurs when either the

bulk mass fraction or solidification rate is Increased for fixed temperature gradient is

consistent with the location and character of the dendritic regions 1 and 2 in our results.

For a given value of the bulk solute mass fraction, there exists a critical solidification

rate above which the one-dimensional dendritic solution is stable with respect to

infinitesimal disturbances. For all values of F, and D(_ dendritic solidification is least stable
i
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with respect to buoyancy-driven convection for solute mass fractions near 0.2 (the value at

which the dendritic stability boundary has a turning point). This occurs because for this

value of C. the mushy-zone thickness Hm and the composition difference ACm attain their

maximum values independent of temperature gradient and solidification rate (cf. figure 4.3

and accompanYingdescription). If the Rayleigh number_ Rm_ we define for the mushy zone is

proportional to ACrnHm (Worster 1992), maximum destabilization for the Pb-Sn system

occurs for C, near 0.2. Fowler (1985) defined a Rayleigh number R-(cz c -=z T) m L pogK/V],

where R is a monotonically Increasing function of the permeability, and showed that there is a

critical value Re= 1/(C E -C.) such that if R < Rc , then dendritic so!idification is stable with

respect to small disturbances. Note that for Pb-Sn, Rc assumes a minimum near C. = 0.2.

Thus, there is a critical solidification rate above which the condition R < R c is satisfied, and

dendritic solidification is convectively stable. Our numerical results are thus consistent with

the approximate analytical results of Fowler (1985) and Worster (1992).

We also note that the stable range of ,/and C.- grows as T' decreases. This is due to the fact

that liquid volume fraction (and hence permeability) decreases with decreasing temperature

gradient, so that the mushy zone becomes more immobile and the onset of convection is

suppressed. That is also consistent with Fowler's result, since the Rayleigh number

decreases as permeability decreases.

The amplitudes of the disturba_nce to the vertical , velocity assume a maximum in the

liquid ahead of the liquid/mushy-zone interface, and decay strongly in each region.

Buoyancy-driven convection is largely confined to the liquid ahead of the interface and to the

part of the mushy zone where the fluid is most mobile (near the liquid/mushy-zone

interface). The interdendritic fluid farther from the liquid/mushy-zone interface is

essentially stagnant. For f' = 7.12 x 10 -2 (GL= 50 K cm-1), the critical wavenumber range

is approximately 0.25 < a < 0.35 (depending on C.) for the nonrotating case (figures 4.4a-

c). The corresponding convective wavelength of 0.06 cm is small compared to the mushy-

zone thickness (H m - 0.311 cm for C. = 0.55), but large compared to the diffusion length for
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a typical solidification rate (4.92 x 10 -3 cm for V[ = 61 p sec -1 at the critical value of 7).

We believe that this convection corresponds to the mushy layer mode described by Worster

(1992). Rotating the system at Qo = 500 rpm suppresses the convective Instability at

relatively small wavenumbers and nearly doubles the critical wavenumber, so that the

wavelength of the buoyancy-driven convection is reduced by almost half relative to the

nonrotating case.

That a one-dimensional dendritic solution exists under conditions for which plane-front

solidification is linearly stable with respect to morphological disturbances might at first

seem inconsistent. However, our result implies no such inconsistency, because the plane-

front stability analysis (Coriell et al. 1980) is restricted to infinitesimal disturbances. In

fact, in part of the region where the plane-front solution is linearly stable, it is known

(Wollkind & Segel 1970; Alexander et al. 1986; Ungar & Brown 1984) to be unstable with

respect to a subcritical ('finite amplitude') instability. Thus, in the region in which the

plane-front solution is linearly stable, it is not surprising that we also find a one-

dimensional dendritic solution.

The remarkable suppression at modest rotation rates of plane-front convective

Instability in Pb-Sn binary alloys was discussed in Chapter 2 in terms of the well known

Taylor-Proudman mechanism, described by Chandrasekhar (1961). The Coriolis

acceleration also inhibits the onset of buoyancy-driven convection in the dendritic case, but

to a lesser extent than for plane-front solidification. This is because the effective Taylor

number (a dimensionless measure of the Coriolis acceleration) is smaller in the dendritic

case, due to the larger "effective viscosity" of the interdendritic fluid in the porous medium.

The far greater suppression of dendritic solidification at smaller wavenumbers than at larger

wavenumbers, and the shift of the critical wavenumber to a higher value (both shown in

figure 4.4) are expected on the basis of the character of the Taylor-Proudman mechanism.

L_

W
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CHAPTER 5

Conclusion

For liquid Pb-Sn undergoing plane-front solidification, a remarkable suppression of the

onset of buoyancy-driven convection is obtained at low solidification rates (more than a

hundredfold increase in the critical value of C, at V1= 1 p.sec -1 by rotating the layers at 500

rpm for the two values of G L considered). The mecha_nismLof this stabilization is discussed in

terms of the Taylor-Proudman theorem, in Chapter 2. It is not surprising that the

morphological instability is unaffected by rotation. The morphological instability occurs at

very short wavelengths, so the motion is=almost perpendicular to the solidification front (i.e.,

aligned with the axis of rotation). Hence, the Coriolis acceleration does not sensibly affect the

morphological instability. The predicted inhibitory effects of rotation on convection are

discussed in terms of previous experimental and theoretical studies of the effect of rotation on

the onset of buoyancy-driven convection in single-component fluids heated from below and in

binary fluids subject to thermal and solutal stratification.

For mercury cadmium telluride Hgl.xCdxTe, the liquid density does not depend

monotonically on temperature for some range of the bulk solute composition. For certain

combinations of the operating parameters (solidification rate, nominal liquid-side vertical

temperature gradient, and bulk solute concentration) a density maximum occurs at a

temperature greater than the liquidus temperature and there exists a sublayer adjacent to the

solid-liquid interface in which temperature gradient is destabilizing. This has profound

effects on the nature of neutral curves, eigenfunctions, and the stability boundaries.

The morphological instability is completely insensitive to the net density stratification

in the liquid, and is relatively insensitive to the variations of temperature and composition

outside a relatively thin layer adjacent to the interface. This is evident from a comparison of

the neutral curves and stability boundaries for Hgl.xCdxTe to those for Pb-Sn. On the other

hand, the onset of buoyancy-driven convection depends strongly on the nature of the
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stabilizing or destabilizing temperature and solute gradients in the liquid, as well as on the

diffusivities of the stratifying agencies. For Pb-Sn, the onset of buoyancy-driven convection

is monotonic in time (corresponding to the fingering regime of doubly-diffusive convection),

while for Hgl.xCdxTe the motion is overstable or oscillatory in time (the diffusive regime).

This is discussed in terms of the standard "parcel" argument for a linearly stratified doubly-

diffusive fluid (Turner 1973, page 251) in Chapter 3.

In contrast to the case where the density depends monotonically on temperature and

composition (e.g., the lead-tin alloys considered by Corlell et al. (1980)), for Hgl.xCdxTe

there exists a critical value of the bulk mole fraction below which plane-front solidification

is unstable at all solidification rates. This differs from the Pb-Sn case in that for Pb-Sn,

plane-front solidification at any C, is linearly stable for all sufficiently small solidification

rates. Moreover, when the density varies nonmonotonically, there can exist a critical value

of the dimensionless solidification rate ¥(denoted by "/*)such that for _,> ¥', plane-front

solidification is unstable for all values of the bulk mole fraction C.. In this case, for _ < _,*,

there is a finite range of C. for which the plane-front solution is stable. This latter result

differs from the Pb-Sn case, for which at all dimensionless solidification rates, plane-front

solidification is stable for all values of C. lying below some critical value.

For Hgl.xCdxTe , the disturbances associated with the oscillatory onset of buoyancy-driven

convection are largely confined to that thermally unstably stratified sublayer. The results

should be expected to apply to the solidification of other binary or multicomponent liquids in

which (aPL/O_TL)(O_TL/o_z)changes sign within the layer.

The effect of rotation on the stability of plane-front solidification of Hgl.xCdxTe

pseudobinary liquid has also been Investigated. Similar to the case for Pb-Sn alloys, the

onset of buoyancy-driven convection is inhibited significantly by modest rotation rates, but

the morphological instability is not sensibly altered.

In Chapter 4, we show that a one-dimensional steady mushy-zone solution exists for only

some combinations of the temperature gradient, solidification rate, and bulk mass fraction.
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This is not surprising since this basic state is computed from a nonlinear ordinary

differential equation system for which a solution need to exist. The one-dimensional mushy-

zone solution is stable for sufficiently large solidification rates for all wavenumbers. At

lower solidification rates, it is unstable with respect to disturbances which grow

monotonically in time. We also found that the dendritic basic state solution exists in part of

the region where plane-front solidification is linearly stable with respect to morphological

instability. This does not imply any inconsistency between our models of plane-front and

dendritic solidification, since the plane-front stability analysis is restricted to infinitesimal

disturbances. In part of the region where the plane-front solution is linearly stable,

previous studies have shown that it is unstable with respect to subcritical instabilities.

Hence, it is not surprising that we find a one-dimensional dendritic basic state solution in the

region where the plane-front solidification is linearly stable.

We have also found that the Coriolis acceleration suppresses the onset of buoyancy-

driven convection during dendritic solidification of Pb-Sn binary liquids. The relative degree

of stabilization is less than for plane-front solidification. This is due to the fact that the

effective Taylor number (a dimensionless measure of the Coriolis acceleration) is smaller in

the dendritic case, due to the larger effective viscosity of the fluid in the porous medium.

Even though the analysis in this dissertation is restricted to horizontally unbounded fluid

layers, the predictions will be qualitatively correct for finite aspect ratios (ratio of mold

radius to height) if the parameter Q2o Ro/g (a Froude number, where Ro is the mold radius)

is sufficiently small, as discussed in detail in Chapter 2. For the onset of thermal convection

in rotating water or mercury layers heated from below, the excellent quantitative agreement

between classical linear stability analysis for a horizontally unbounded layer and

experimental work for finite aspect ratios provides a clear demonstration of the potential of

the Coriolis acceleration to suppress buoyancy-driven convection in a rotating fluid.

The relatively modest rotation rates required to significantly inhibit the onset of

convection in the Pb-Sn and Hgl.xCdxTe systems make the proposed method an interesting
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candidate for a program of laboratory experiments. Experiments might be conducted using a

completely filled cylindrical mold, thermally Insulated on the vertical surface, and mounted

axisymmetrically on a rotating horizontal turntable. If the liquid at the top of the rotating

mold is in contact with a gas or vacuum, it will have a nearly paraboloidal free surface, on

which the elevation above the point on the axis of rotation is &z = _ r2/(2g). Although this

configuration is consistent with rigid-body rotation, it also leads to a nearly paraboloidal

solid-melt interface. For high rotation rates or large mold radius, this will in turn lead to

significant radial variations in the solidified alloy. Also, cooling at the radial boundary leads

to a radial temperature gradient, which in turn leads to significant centrifugal effects.

Therefore, the present results can not compared to the experimental works in which strong

radial variations in macrosegregation are observed in the solid.

in our models for both plane-front and dendritic solidification, the domain considered is

horizontally unbounded and, the liquid and solid extend vertically to z = - and z = --,

respectively. The interfaces in the basic state are assumed to be nominally planar. We also

assume that solidification occurs sufficiently fast at the growing interface or in the mushy-

zone so that the solid-liquid interface for plane-front solidification, or the entire mushy-

zone for dendritic solidification can be considered to be in thermodynamic equilibrium. Thus

nucleation and other kinetic effects are neglected in our models.

We have also assumed that the solid is thermally isotropic, and that for plane-front

solidification, the liquid-solid interface is isotropic. The effects of boundary thermal

anisotropy have been dealt with in Rayleigh-B_nard problem by Pearlstein & C)ztekin

(1989), while anisotropic surface tension has been considered for plane-front solidification

by Voorhees et a/. (1984). Both of these effects can be Incorporated easily into the present

work.
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Appendix A

The numerical solution of (2.17)-(2.19) can be obtained using a spectral Galerkin

technique developed by Zebib (1987). We approximate the highest derivatives of the

amplitudes of the disturbance velocity, vorticity, solute distribution, and temperature in the

liquid, and temperature in the solid, by truncated sums of Chebyshev polynomials of the form

W(4)(Z2) = __.,KITI(Z2),

j=o

(A1 a)

J

j=O

(Alb)

J

X(L2)(Z2) = _PjTj(z2),

j=-0

(Alc)

o 2)(z2 =T_,Q)Tj(z2 . (.,,Id)
j=o

J

= ,T_ZjTj(z, ,
j=o

(Ale)

where the coefficients Kj, Mj, Pj, Qj, and Zj are to be found. Representations of lower order

derivatives can be found by integrating (Ala-e) and using the following standard properties

of Chebyshev polynomials

2 Tn(z)= °'n dTn+l(Z!-Zn'2 dTn'l(Z)
n+l dz n-1 dz

(A2a)

and
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2Z Tn(Z) = anTn+l(Z) - ;Ln.lTn-l(z) , (A2b)
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where ¢=n= Zn = 0 if n < 0, ¢zo = 2, ;Lo = 1, and a n = Zn = 1 if n > 0. The Integration constants

in the lower-order derivatives can be determined as functions of Kj, Mj, Pj, Qj, and Zj using the

boundary conditions (2.19), leading to

w(m)(z2 )= '_ A'_

J+4-m

[Wji(m)K l + Yl 2 jl(m)Mj + Yl 3ji(m)pj + Y14 jl(m)Qj + Yl 5Jl(m)zj] Tj(z2)

po
J+3-m

_'_g 1 jlm)_ Tj(z2) '

J-o

+

(A3a)

¢0(n)(z2)= '_ '_

po

J+2-n

[(0ji(n) M j + Y21 jilnlKj + Y23 jllnlpj + Y24 jilnlQj + Y25 jiln)Zj] Tj(z2) +

J+l-n

'_g 2 j(n)_ Tj(z2) ' (A3b)

ZL(n)(z2) = '_

J J+2-n

'_[Z k ji(nlpj + Y31 ji(nlKj + Y32jiln)Mj + Y34 ji(n)Qj

_o po
J+l-n

A'_g 3 j(n)_ Tj(z2) '

po

+ Y3sji(n)zj] Tj(z2) +

(A3c)

J J+2-n

eL(n)(z2) = _'_ A'_

_o j=o
[(_ L ji(n)Qj + Y41 ji(n)Kj + Y42 ji(n)Mj + Y43JI(n)pj + Y45 ji(n)zj] Tj(z2) +

J+l-n

___j g4j(n)_ Tj(Z2),

j..o
(A3d)

J J+2-n

es(n)(z2) = _ A'_ [6 S jl(n)zj + YSl ji(n)Kj + Y52 ji(n)Mj + Y53 jl(n)pj + Y54 ji(n)Qj] Tj(z2) +

J+l-n

J'_g 5 j!n)_ Tj(z2) '
po

(A3e)

for m = 0,1,2,3 and n = 0,1. Substituting (A3a-e) into the governing equations and taking

inner products with

J+4 J+2 J+2 J+2 J+2

'__,WjI(O)Tj. '_L,COjI(O)Tj, '_,ZL jI(O)Tj, '_,OLjI(O)Tj, and '__,OSjI(O)Tj.
pO I...0 pO _ J...O

(A4)
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respectively, we reduce the solution of (2.17)-(2.i9) to a matrix eigenvalue problem

A s + o B s =0, (A5)

where o is the temporal eigenvalue, A and B are square matrices, and s= [Kj, Mj, Pj, Qj, Zj, _]T

is the eigenvector. The choice {A4) eliminates the spurious eigenvalues frequently

encountered in the solution of eigenvalue problems for ordinary differential equations when

using basis functions not satisfying the boundary conditions.
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Appendix B

To the best of our knowledge, the only data available for the density of liquid Hg1.xCdxTe

are those of Mokrovskii & Regel (1952) for pure HgTe, and Chandra & Holland (1983) for

CdTe mole fractions in the range 0 < C < 0.2. On the basis of the latter, three equations of

state (Chandra 1985; Antar 1987, 1988, 1991; Apanovich & Ljumkis 1991) have been

proposed for liquid Hgl.xCdxTe. Unfortunately, for C -. 0, Chandra & Holland's data differ

systematically from those in Mokrovskii & Regel's well-known paper from Ioffe's Physico-

Technical Institute in St. Petersburg. Chandra & Holland refer to two other papers by Regel,

but make no reference to his work with Mokrovskii on the density of HgTe.

Although the relative difference between the C = 0 data of Chandra & Holland and

Mokrovskii & Regel is only about 0.65%, the average difference amounts to about 60% of the

density variation reported by Mokrovskli & Regel over 963 K < T < 1173 K and to about

75% of the variation reported by Chandra & Holland over 953 K _; T < 1073 K. Moreover,

the C = 0.1 data of Chandra & Holland show density extrema at three temperatures, whereas

all other data vary either unimodally (for C < 0.05) or monotonically (for C > 0.1) with

temperature. Finally, Chandra & Holland reported data only for the Hgl.xCdxTe system,

whereas Mokrovskii & Regel's (1952) density measurements for other liquids are in good

agreement with those of Lucas & Urbain (1962) and Lucas (1964) for germanium, and of

Glazov, Chizhevskaya & Evgen'ev (1969) for germanium, gallium antimonide, and indium

antimonide, thus allowing an independent assessment of accuracy.
i

We have thus chosen to regard the C = 0 data of Mokrovskii & Regel as accurate, and have

undertaken to recalculate the data of Chandra & Holland on that basis. Chandra & Holland

measured the liquid height & in a capillary tube, from which their reported liquid volumes

VCH were inferred using a linear equation of the form VCH == 81A + 82. Based on discussion

with Chandra (private communication), we hypothesize that the primary source of error is

in either the determination of & or the determination of V from A. Thus, we have recalculated
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Chandra& Holland'sdata (excludingtheir measurementsfor C - 0.1 at the two artifactual

extremal temperatures of 1053 K and 1083 K) by using

Vrc ,,=SIVCH + S2,
(B1)

and regarding sI and S2 as unknowns, which we determine by minimizing the sum of the

squared differences of the specific volumes

'tEp - PMR(Ti) Prc(Tt ) , ( B 2 )
i

at C = 0, where PMR refers to the experimental HgTe density data of M0krovskii & Regel,

Prc= mHgTe/(SlVCH + S2) iS the recalculated density of Chandra & Holland for C = 0, the mass

of pure HgTe used by Chandra & Holland for C = 0 is mHgTe = 62.6457 g, and VCH is the HgTe

volume reported by Chandra & Holland at each temperature T i at which _they measured the

density for C = 0. The sum Ep iS minimized by sI = 0.9935 and s2 = 4.553 x 10 -1° cm 3.

Noting that the volumes reported by Chandra & Holland are on the order of 10 cm 3, we see

that (B1) is nearly equivalent to multiplying the data of Chandra & Holland by a constant.

This allows recalculation of Chandra & Holland's reported volumes (for all but the two

data points cited above) according to (81). Recalculated values of Chandra 8, Hoiiandisdata at

all mole fractions are used to fit by least-squares a bivariate polynomial of the form (3.7a)

in the temperature range of their density data. The coefficients _j are

boo ,, 8.108 g cm "3 bol = -1.578 x 10 -4 g cm'3K "1

bo2 = -1.046 x 10 -5 g cm"3K'2 bo3- 4.268 x 10 -8 g cm'3K "3

bo4 - 1.983 x 10 -1° gcm'3K "4 blo- -2.419 gcm "3

bll - 1.757 x 10 -3 g cm-3K-1 b12 - 1.145 x 10 -5 g cm'3K "2

b13 = 4.687 x 10 -8 g cm'3K "3 b2o = -2.181 g cm"3

b21 = 5.885 x 10-4 g cm'3K "1 b22 = -2.049 x 10-4 g cm'3K °2

b3o = 8.892 g cm"3 b31 = 4.436 x 10 -2 g cm'3K "1.

m
i

i

U

BIB

IB

m

i

am

[]

W

u

m



"- 97

i

z z

i

Far from the liquid-solid interface, however, the liquid temperature exceeds the

maximum temperature (Tmax(C)) at which PL data are available. For T > Tmax (C), the liquid

density is approximated by a linear function of temperature (3.7b). The coefficients djj in

(3.7b) are computed by matching the density and its temperature derivative at T - Tma x (C)

and are found to be

doo = 8.119 gcm -3 dlo - -2.435 gcm -3

d2o = -1.985 gc m'3 d3o - 10.48 gcm "3

-__=_-- dol = -7.703 x 10 -4 g cm3K "1 dll = 2.753 x 10 -3 gcm3K "l

"1 d21 = -1.358 x 10 -2 g cm'3K "1 d3t = 1.302 x 10-2 g cm3K "1

The coefficients rt In (3.8) are computed by a least-squares fit of the maximum

v

H

W

temperatures at which Chandra & Holland reported the density for different CdTe mole

fractions. The values of ri are

ro = 1073 K r1 = 291.7 K r2 =-2250 K r3 = 8333 K.

The results are shown in figure B1. Solid curves represent liquid density determined

from (3.7a,b) as functions of temperature for C - 0, 0.05, 0.1, and 0.2. Filled circles

denote the C = 0 density data reported by Mokrovskii & Regel (1952). The other symbols

denote density data reported by Chandra & Holland (1983). For 0 < C < 0.16, we obtain a

unimodal density variation with temperature. (At the Value of C at which p becomes a

monotonic function of T, the maximum occurs at the liquidus temperature.) Although the

C= 0 density data of Chandra & Holland are consistently lower than those of Mokrovskii &

Regel, the density maxima occur at nearly the same temperature.
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Appendix C

The thermophysical properties of the liquid and solid (other than the density of the

liquid) are taken as constants evaluated using the functional forms shown below at the bulk

mole fraction and corresponding liquidus or solidus temperatures ('l'liq and Tso_).

We have taken the density of solid Hg l.xCdxTe as

1__=_._L. (Cl)
PS PCdTe PHgTe

:=

where _ = CMcdTe/M is the CdTe mass fraction, the molecular weights of CdTe and HgTe are

McdTe ,= 240 g/moi and MHgTe "- 328.2 g/mol, M - CMcdTe ÷ (1-C)MHgTe, and PCdTe and

PHgTe are the solid densities of pure CdTe and HgTe, respectively, represented by

PCdTe -- ;LO+ _'1T, (C2a)

and

PHgTe = $0 + $1T, (C2b)

where the coefficients Zt and $i are determined by least-squares fits to the experimental data

of Glazov, Chizhevskaya & Evgen'ev (1969) and Mokrovskii & Regel (1952), respectively.

The values of ;_ and $i are

_.o = 5.820 g cm '3

$o = 8.201 g cm -3

The viscosity is represented over the entire range by

v = 1 x 10 -2 exp(4_o * _1/T) cm2/sec, (C3)

where the coefficients 4_o --3.401 and 4_1 - 3445 K are computed by least-squares fit to the

experimental data of Glazov, Chizhevskaya & Glagoleva (1969) for pure CdTe. Due to the lack

i

BII

W
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of experimental viscosity data for HgTe, we use (C3) for the viscosity of Hgl.xCdxTe ,

independent of composition.

The thermal diffusivity of liquid and solid Hgl.xCdxTe are approximated by functions of the

form

teL " (toO + ¢01cl/2 + 0)2c) in(T/K) - (Qo + E_I c1/2 + E_2C) ,

2

_Cs=_ Ti(Soi + SljC _/2 + S21C)
j-o

(C4a)

(C4b)

where the coefficients

0)0 = 0.104 crn2sec-1 0)1 - -0.146 crn2sec-i

0)2 " 0.1 1 8 cm2sec -1 _0 = 0.6 6 8 cm2sec -1

_Q1 = -0.941 cm2sec -1 _Q2 " 0.783 crn2sec-1

Soo = -5.945 x 10 -3 cm2sec-1 $1o - 1.698 x 10 -2 cm2sec -1

$2o - -0.114 cm2sec -1 S01 - 7.148 x 10 -5 cm2sec-llc 1

$11 = 1.646 x 10-4 cm2sec-lK -1 $21 = 4.475 x 10-4 cm2sec-lK -1

S02 - -7.829 x 10 -8 cm2sec-1K -2 $12 - 1.969 x 10 -7 cm2sec-1K -2

$22 - -4.120 x 10-7 cm2sec-lK -2.

are determined by least-squares fit to the experimental data of Holland & Taylor (1983).

The specific heat of liquid Hgl.xCdxTe is represented by

2 2-t

cp, L (T,C) =_ _ qlj Ci (T-943 K)J . (C5)
I=o j,,o

The coefficients qij are found by least-squares fit to the calculated specific heat of Su (1986).

The values are

qoo = 65.08 J K-1 mo1-1 qol - -0.101 J K-2mo1-1

qo2 = 3.961 x 10-4 J K-3 mor "1 qlo - 1.648 J K-1 mo1-1

qll " 7.004 x 10 -3 J K-2mo1-1 q2o = -5.044 x 10 -3 J K-1tool -1,
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where we have used the relation 1 mol = 2 g-atom for the pseudobinary system Hgl.xCdxTe to

convert Su's data (in cal K-1 g-atom -1) to J K-1 mo1-1.

The specific heat of solid Hgl.xCdxTe is taken as

(C6)
Cp,S = Cp,S,HgTe(1-C) + Cp,S,CdTeC,

where the temperature-dependence of the specific heats of pure HgTe and CdTe is found from

Mills (1974) to be

Cp,S,HgTe= [52.09 + 9.08 xl0 -3 (T/K)] J K-lmo1-1 (C7a)

and

Cp,S,CdTe= [40.0 + 3.3 xl0 -2 (T/K)] J K-lmo1-1.

The latent heat of fusion is approximated by

(C7b)

L(C) - (1-C)LHgTe + CLcdTe, (C8)

where data for the pure components are given by Mills (1974) as LHgTe-3.6x 104j mo1-1

and LCdTe- 4.48 x 1 04 J roof 1. The interfacial energy is estimated by comparing Hg 1.xCdxTe

and InSb (Seidensticker & Hamilton (1963) compared Ge and InSb to estimate the interfacial

z

energy of InSb)

°.0, xC x .• +b (C9)
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where the latent heat of fusion per unit volume for Hgl.xCdxTe is taken to vary linearly with

solute mole fraction (see (C8)), ao - 6.4797 ,_ for InSb, and ao - 6.465 A is used for

HgloxCdxTe independent of composition (Glazov, Chizhevskaya & Giagoleva 1969). Here the

surface tension is taken as O'lnSb = 8.5 x 10-s J cm-2, and the latent heat of fusion per unit

volume of InSb is L = 1.20 x 103 J cm-3. The capillary coefficient is then computed from

u
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= O'Hg1.xCdxTeTrioL ' (c10)

where Tli q iS the liquidus temperature for a given bulk mole fraction of CdTe in the liquid.

The Iiquidus and solidus temperatures

and

liquidus slope

Tliq = (943 + 681 C - 372 C 2) K

T=o1=(943+202C- 150C 2+324C 3) K,

(C11a)

(C11b)

m L= (681-745C) K,

and segregation coefficient

k - C (0.30 - 2.24 x 10-3_K -1 TsoI + 2.67 x 10-s K-2 T21 )-1

(C12)

forC•0.1, (C13a)

k = 3.74 forC<0.1, (C13b)

as functions of CdTe mole fraction were determined by least-squares fits to the experimental

data of Szofran & Lehoczky (1981).

Finally, the solute diffusion coefficient is taken as DL - 5.5 x 10 -s cm2/sec, the value

most commonly used in the literature (see e.g., Kim & Brown 1989).
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Appendix D

Our model of flow in the mushy zone is based on the observation that the primary

dendrites formed during dendritic solidification of binary alloys are columnar and oriented

parallel to the nominal solidification direction. We treat the dendritic region, saturated by

interdendritic fluid to be a porous medium the permeability of which is taken to be

orthotropic with horizontal isotropy. The functional dependence of the components Kh and Kv

of the permeability is determined from the calculated drag coefficients of Sangani & Acrivos

(1982a) and Drummond & Tahir =(1984) for flows normal

cylinders in hexagonal and triangular arrays, respectively.

concentrated and dilute arrays (solid curves in figure D1)

and parallel to the axes of

The asymptotic solutions for

g

I

IB

I

W
IB

IB

KX-_= 14-_ (Incp-1/2-0.745+ q)-0.25q> 2)

z

I

for q) < 0.3, (D1)

_ ¢p)4._--rl- (. q_ ._1/2-]s/2 for q_> 0.7, (D2)

27x L t JJ

are derived by Sanganl & Acrivos (1982a),where _ = I - @ isthe solidvolume fraction,_max

is the maximum value of the solid volume fraction when the cylinders touch, and ;L is the -.

primary dendrite arm spacing. The open circle s are permeability values calculated by

Sangani & Acrivos (1982a) for flow through a hexagonal array of cylinders, and match the _--,

asymptotes (D1) and (D2) for sufficiently large and small @. Hence, for 0.3 < _ < 0.7, we

use a functional form

Kh 1-_(incp-l/2_b. q_-0.25q) 2) for q_<0.3, (D3)= 4_

similar to (D1), and determine b = 0.7508 by least-squares fit to the calculated drag

coefficients of Sangani & Acrivos (1982a). Our fit is shown for 0.25 < @ < 0.725 by the
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dashed curve in figure D1. The dotted curve of figure D1 shows the permeability calculated

by Sanganl & Acrivos (1982b) for simple cubic arrays of spheres.

For the normal component of permeability, we use the results of Drummond & Tahir

(1984) for flows parallel to the axes of cylinders in triangular arrays

v

.,===

Kv ( 1 - (p)2"_/'2-1 .
= 16= _-,nq_- 1.4975.2 q_- 0.5 q_2- 0.002514 q_s) forq_<0.7, (D4)

The primary dendrite arm spacing _. for Pb-Sn systems was determined by Mason et al.

(1982) using experimental data over a wide range of temperature gradient G L and

solidification rate Vz by the relationship

_"AGL -B, (D6)

where the coefficients A and B given by Mason et al. (in their table 2) are functions of

solidification rate. In our calculations, we have determined A and B by interpolation.

r
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